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Abstract. Strong physical unclonable functions (PUFs) provide a cost-
effective authentication solution for resource-limited devices. However,
they are susceptible to machine learning (ML) attacks. The lightweight
defenses against ML rely on adding non-linearity in the PUF behavior
(as the XOR-PUF), or limiting the number of challenges at protocol level
(as the lockdown protocol) to constrain learning. Another low-cost ap-
proach is to use a non-linear quantization of the response when the PUF
provides an integer response, like the RO-PUF. This paper studies the
non-monotonic quantization (NMQ) which greatly enhances the security
when a large number of quantization level is used. Unfortunately, this
makes the PUF highly unreliable, rendering it impractical for authenti-
cation purposes. In this study, we propose a solution which circumvents
the intrinsic PUF unreliability of NMQ to build an effective authentica-
tion protocol. It relies on the Neyman-Pearson test which transforms the
native dependability of responses into an asset to get a reliable authen-
tication protocol. To validate this approach, we evaluate our solution in
FPGA using a loop PUF (ring oscillator-based PUF) which is a multi-
bin PUF. The results show that an authentication success of nearly 100%
can be obtained with a high resistance as up to 60% accuracy against
three types of ML attacks.

Keywords: Hardware security · Physical unclonable functions · ML at-
tacks · Reliability · Non-monotonic quantization · Neyman-Pearson test

1 Introduction

Physical unclonable functions (PUFs) have been proposed as a low-cost security
anchor [1, 2], notably for lightweight authentication protocol. This protocol relies
on the physical input/output relationship (respectively challenge/response) of
the PUF. The PUF called strong are well suited for this application as they
provide many challenge-responses pairs(CRPs).

In the context of a challenge-response protocol, for a PUF to be secure,
its output must be hard to predict. Strong PUFs relying on delay chains as
entropy source (such as the arbiter PUFs [3] and RO PUFs [1]) have inherently
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a linear behavior or a limited entropy. Therefore they are attackable by machine
learning (ML) techniques such as linear and/or logistic regressions by collecting
challenge-response pairs (CRPs) [4]. In order to prevent such attacks, the PUF
must be hard to model. One type of protection is to introduce non-linearity into
the current PUF architectures. The composition of PUFs is one way to increase
the non-linear behavior. The XOR-PUF [1] which is composed of arbiter PUFs
whose outputs are XORed, and the interpose-PUF [5] are the most popular. The
use of permutation of multiple delay lines [6] like the Beli PUF [7] is another
type of protection. However, even if a deep security analysis of these structures
has shown a great increase of robustness against ML attacks, they still remain
vulnerable [8, 6].

Another non-linear approach applicable to PUFs where the physical vari-
able can be quantized with more than 1-bit, like the oscillation frequency of
the RO-PUF, is to do the non-monotonic quantization (NMQ) [9]. The output
distribution of these types of PUF is multi-bin PUF as their entropy is more
than one bit, hence the values are {0,1,2,3} for a 2-bit linear quantization. A
generic multi-bin PUF is the Alphabet PUF [10] which takes advantage of a
multi-threshold quantization stage and data encoding. The alphabet PUF has
been originally studied for secret key generation with Helper data and ECC, but
it can also be used as a strong PUF with a CRP protocol. The NMQ quantiza-
tion principle is to transpose a n-bit PUF to a 1-bit PUF such that the values
1 and 0 values are interleaved, i.e. the values {0,1,2,3} of the 2-bit PUF become
{0,1,0,1}, thus generating a 1-bit output in a non-monotonic way. It has been
shown in [9] that the resistance against ML grows with the quantization lev-
els, denoted by Q in the sequel, but the reliability becomes so low with high
Q that an authentication process becomes impossible. Indeed, Q values involves
Q − 1 thresholds to compare at the quantization stage, and consequently more
unsteadiness due the environmental noise around these thresholds.

In this paper, we first study the PUF with NMQ quantization (NMQ-PUF)
to better know the impact of the quantization level Q and the environmental
noise on both the security against ML and the reliability. Then, we propose an
authentication protocol based on the Neyman-Pearson Lemma [11] to compen-
sate for the bad reliability of NMQ with high values of Q. It has to be noted
that the security comes from the NMQ quantization, while the protocol helps to
mitigate the low reliability of NMQ by exploiting the knowledge of the reliability
itself for each challenge. Our simulations and experimental results with a multi-
bin PUF – a Loop PUF [12] implemented in FPGA – show the effectiveness of
the proposed approach, allowing for high values of Q, while compensating the
resulting high bit error rate.

As a summary, the contributions of this paper are the following:

1. Present analyses on the reliability and security against modeling attacks with
NMQ at various quantization levels.

2. Propose a new PUF authentication protocol using the Neyman-Pearson test
in the presence of high bit error rates.
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3. Validate the security and authentication success on a Loop PUF imple-
mented in FPGA.

The remainder of this paper is structured as follows: Related work is discussed
in Section 2. The main contributions on reliability, machine learning attacks and
our proposed protocol are presented in Sections 3 and 4, respectively. We show
experimental results in Section 5. Section 6 discusses about the impact of the
environment on the authentication method, and Section 7 concludes.

2 Related Work

In this section we present the context related to the ML attack against PUF
when used for authentication. The protections against such attacks are either to
build a natively robust PUF or to devise specific PUF protocols, or both. The
robustness challenge is all the greater if the PUF has to keep the lightweight
property.

2.1 Modeling Attacks on PUF

In the classical PUF Challenge-Response Pair (CRP) protocol, the input chal-
lenges and associated output responses can be eavesdropped and replayed by
the attacker. A stronger model which is currently used in the literature and in
this paper is that the attacker has full access to the device’s interface. Thus,
she can freely input any challenge and read the associated response to build a
CRP dataset and feed Machine Learning (ML) algorithms to get a PUF model.
The attack efficiency highly depends on the ML algorithms and the number of
collected CRPs to get a high accuracy. The arbiter PUF [13] is one of the first
silicon PUF which has been devised and attacked by the Support Vector Machine
(SVM) algorithm [14]. More derivatives of Arbiter PUF have been attacked by
the Logistic Regression algorithm (LR) in [4]. It takes advantage of the quasi-
linear behavior of the arbiter PUF which relies on a delay chain. The progress
in ML attack has followed the evolution of PUF. For instance the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [15] uses the information of
reliability to increase the attack efficiency of XOR-PUF. The hyperparameters
of Neural Networks (NN) have often to be tailored to target a great variety of
strong PUFs [16].

2.2 ML Resistant PUFs

Many PUFs have been devised to have a more complex and non-linear behavior,
mainly by using a composition of PUFs. One of the most common is the XOR
Arbiter PUF [1]. It has been shown that the Neural Network (NN) is an efficient
ML algorithm to attack such PUF [17]. The Interpose PUF [5] provides a bet-
ter security for the same complexity as the XOR PUF. Another variant is the
Multiplexer Arbiter PUF where the XOR is replaced by a multiplexer [18]. A
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novel architecture relying on permutations of multiple delay lines like the Beli
PUF [7] has been recently proposed. All these architectures significantly increase
the security, especially with bigger size and composition of delay lines. But all
the proposed PUFs can be attacked by learning bigger dataset and optimizing
ML algorithms [8, 6]. For instance the attack on the interpose PUF splits the
composed PUF in subsets to perpetrate a divide and conquer approach.

2.3 PUF Protocols

In the survey by Delvaux et al. [19], it is shown than most PUF-based authen-
tication protocols use cryptographic block, True Random Number Generator
(TRNG) or Error Correcting Code (ECC). These tools allow to get a higher
level of robustness, even if in [20] it is shown that many PUF protocols are at-
tackable by tailored ML. The significant drawback of these protocols result in
an heavyweight implementation which is not suitable for low-cost products like
RFID or IoT devices. There are very few lightweight protocols which do not
require complex blocks at device level. The Lockdown technique [21] is one of
the more robust and lightweight protocol as it allows the authentication process
to bound the number of CRPs, hence thwarting the ML attacks by limiting the
dataset.

2.4 Contribution of the Proposed Method

We consider that the security against ML attack is ensured by the multi-bin
PUF architecture which uses NMQ as quantizer. The authentication protocol
uses the Neyman-Pearson test to enhance the bad reliability provided by NMQ
when the number of quantization levels is high. Hence, from the security point of
view, it mainly relies on the PUF rather than the protocol. This latter is to allow
the NMQ-PUF to work properly when it has a high level of security. Another
strong requirement of the method is its lightweight property. The only addition
of complexity is the quantization block which consists of comparators between
the PUF internal response and constant threshold values.

The next section is dedicated to the security and reliability of NMQ, notably
the impact of the quantization level and noise on these two properties.

3 Non-monotonic Quantization

In this section, we first introduce the basic definitions and notations in order to
reason about PUFs and present NMQ and its specific properties of reliability
and security.

3.1 Basic Notions

We will denote the set of challenges as C = {C1, C2, . . . , CN}. The response of a
PUF is calculated in two steps: First we measure the raw response (in our case
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a delay difference) to a given challenge. The raw response is then quantized in
a second step to a single bit response. The first step is modeled as a function P
that maps a challenge to a delay difference value:

P : C 7→ δC . (1)

The raw response P can be modeled as a random 3 variable ∆ following a
normal distribution: ∆ ∼ N (µ,Σ2). The standard deviation Σ depends on the
underlying circuit technology. Note that the function P is an idealized model,
since it does not take into account measurement noise. This raw response is then
mapped to a single bit using some quantization function

b : δC 7→ {0, 1}. (2)

We summarize both as the PUF’s response

R(C) = b(P(C)). (3)

A typical example for b is the sign of the raw response.
For a more realistic model, we need to take into account the noise, which

will make the measurements of δC vary around their nominal values. Again, we
model the noise as a random variable Z ∼ N (0, σ2). By adding the noise to the
nominal output, we obtain a probabilistic version of our PUF model:

P̂ : C 7→ δC + Z. (4)

An important property of a PUF implementation is the ratio between the
variance of the nominal response and the measurement noise. The higher the
noise level with respect to the amplitude of the nominal response, the higher
will be the probability to get a wrong response. We thus define the signal-to-
noise ratio of the PUF as the ratio of the two variances:

SNR =
Σ2

σ2
. (5)

Finally, we define the bit error rate (BER) as the probability to obtain a
wrong response, i.e. that the response differs from the nominal response:

BER(C) = P
(
b(P(C)) ̸= b(P̂(C))

)
. (6)

3.2 NMQ Principle

As described above, in classic delay PUFs like the arbiter PUF, RO PUF, or
Loop PUF, the response is based on whether a differential delay ∆ is positive or
3 Note that while the raw outputs δC follow a Gaussian distribution, P is not deter-

ministic but it is considered as such at first, i.e. the environment is steady and the
delays are fixed at fabrication time of the PUF. Section 6 will consider the impact
of temperature and voltage.
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negative, thus equivalent to 1-bit quantization. It has been shown in Section 2
that this simple decision-making process is vulnerable to ML attacks, even for
composite PUF which are attackable by ML with a large dataset or a tailored
ML. For multi-bin PUFs like RO PUF and Loop PUF, the raw output δC can
be quantized on more than 1 bit, let us use Q as the quantization level. This
allows the user to either increase the entropy of log2(Q) bits or to keep a 1-
bit entropy by using the non-monotonic quantization (NMQ) method. Figure 1
shows a typical quantization (equivalent to Q=2) and NMQ with Q=4 and 8.
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(c) Q = 8.

Fig. 1: Different NMQ quantization levels

Given the raw response δC and an even quantization level Q, the non-
monotonic quantization can be defined as

NMQQ(δC) =

{
1, if T2i−1 < δC ≤ T2i for i ∈ {1, . . . , Q

2 }
0, otherwise

(7)

where the Ti are threshold values delimiting the quantiles of the distribution.
In order to avoid bias, we want to use equiprobable quantiles. For example, for
Q = 4, the thresholds can be determined as follows:

T1 = µ− 0.675σ, T2 = µ, T3 = µ+ 0.675σ, T4 = ∞. (8)

This new decision metric complicates the mapping between the challenge and
the response, enhancing the resilience of PUFs against ML-based attacks.

3.3 Reliability of NMQ Implementation

In a PUF equipped with NMQ, its reliability tends to decrease as the quantiza-
tion level Q increases. Figure 2 illustrates the BER of δC for different values of
Q. The BER shown in the Figure has been calculated based on a simulated PUF
using a SNR of 300, which corresponds to the SNR that we have measured for
an FPGA implementation of a Loop PUF, and which is consistent with values
from the literature [22]. We can see that the BER greatly increases for δC being
close to the quantization thresholds. At higher numbers of Q, as the number
of thresholds increases in Q − 1, the boundaries between quantization intervals
become finer. Figure 3 shows the significant impact of SNR on the BER. The
increased granularity associated with low SNR makes the PUF more sensitive
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Fig. 2: BER estimation for different quantization levels and SNR = 300.

to noise when Q is high. This leads to an higher average BER, and thus lower
reliability.

The reduced reliability at higher Q poses a challenge for the authentication
process. With a higher BER, it becomes more difficult to distinguish between
a legitimate device and an adversary, thus creating a significant rate of false
negatives. Although increasing the number of quantization level can enhance
security by introducing more complex response patterns, this comes at the cost
of reliability. Therefore, there is a trade-off between achieving higher security
and reliability.

3.4 Security of NMQ against Modeling Attacks

The question is to know if PUFs equipped with NMQ can really resist against
the modeling attacks. The first study of NMQ [9] has shown that it is attack-
able by Convolutional Neural Network (CNN) with a low level of quantization.
Increasing the quantization level increases the resistance but the PUF becomes
unpracticable because of its very poor reliability. In order to assess the modeling
attack resistance, we utilize Logistic regression (LR) [4], CNN, and multi-layer
perceptron (MLP) as three attacking means4.

4 In this work, we do not differentiate the conventional modeling attacks (like LR, sup-
port vector machine, etc) with the deep learning-based attacks, since they typically
act similarly in evaluating the security of PUFs.
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Fig. 3: BER estimation for Q = 8 and different noise levels

In the sequel, we consider NMQ running on a Loop PUF as an exemplary
target with various NMQ parameter. We launch experiments on both simulated
CRP dataset and real-world CRP dataset acquired on an FPGA implementation.

Modeling Attacks on Simulated NMQ-LPUFs

We first simulate RO-PUFs equipped with NMQ as introduced in Sec. 3.2. In
addition, we also consider the PUF process is perturbed by the environmental
and electronic factors by adding extra noise as in Equation 4. The main impact
of this extra noise is the reliability of the PUF instance, which shall affect the
learnable feature in CRPs and thus the attack accuracy of modeling attacks.

In this work, we have selected several noise levels to show their impact. In
particular, we choose 1

SNR ∈ {0, 1
1000 ,

1
800 ,

1
500 ,

1
400 ,

1
200 ,

1
100 ,

1
50} (namely, SNR

ranges from noiseless to 50). This range of SNR includes typical SNR of FPGA-
based and ASIC PUF implementations that have an SNR between 50 and 300.
For instance, SNR = 220 has been measured on a PUF implementation using
65nm CMOS technology [22], or SNR ≈ 50 when using a 28nm CMOS FD-SOI
technology [23]. In our FPGA experiments, we measured a value of around 300.
We set the total number of CRPs for the training phase to 400, 000 5, which is
enough to get stable results, and use another 100, 000 CRPs for the attack phase.
Each experiment is repeated 10 times to reduce the numerical biases.

The results are shown in Fig. 4. We show the attack accuracy of the three
modeling attacks compared to the corresponding reliability results at each noise
level. The main takeaway is that with increasing of the NMQ parameter, the
modeling attack resistance is largely increased, especially when Q = 32. Secondly,
the noise can have a distinct impact on the learning ability of modeling attack
methods, which are consistent for both CNN and MLP results. Notably, the
best attack accuracy is, as expected, upper-bounded by the reliability of the
corresponding noise level.
5 We have tested for other dataset size for verification, while obtained similar results

starting from around 200, 000 CRPs.



Robust and Reliable PUF Protocol 9

(a) Q = 4. (b) Q = 8.

(c) Q = 16. (d) Q = 32.

Fig. 4: Modeling attack results against NMQ-LPUF with Q ∈ {4, 8, 16, 32} in
simulated scenario.

Modeling Attacks on FPGA-based NMQ-LPUFs

We next present the results on real-world FPGA-based PUF implementation.
We implement NMQ-LPUFs on the Basys3 FPGA boards, which are based on
the Xilinx Artix-7 28nm technology. It is worth noting that SNR ≈ 300 on
the measured dataset containing 1,000,000 CRPs. The attack results are shown
in Fig. 5 for Q ∈ {2, 4, 8, 16, 32} where Q = 2 is selected as the baseline to
demonstrate the security gains against the modeling attacks. Specifically, for
each of LR, CNN and MLP, we vary the size of the training set from 10,000 to
800,000 CRPs and train the model with 50 epochs to show the impact of dataset
size; while the attacking (test) set contains 100,000 CRPs (without overlapping
with training set). We repeat each experiments by 10 times and then take the
average to have more stable results.

Notably, the results from the real-world devices are overall consistent with
the simulated data as shown in Fig. 4. From Fig. 5, there are two main takeaways:
Firstly, NMQ can resist against LR-based modeling attacks even with quite small
Q (e.g., Q = 4). Secondly, NMQ seems to show significantly enhanced resistance
against CNN-based and MLP-based modeling attacks when taking large values
of Q (e.g., Q ≥ 16). The underlying reason is that NMQ discloses less significant
information on the delay difference in deciding the output rather than the sign
function in many ideal PUFs [4]. However, NMQ with smaller Q is still ineffective,
which the designers should be careful to avoid for potential vulnerability against
CNN-based and MLP-based modeling attacks.
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Fig. 5: Modeling attack results against NMQ-LPUF with Q ∈ {4, 8, 16, 32} im-
plemented on an FPGA board.

4 Neyman-Pearson Test for PUF Authentication

To address the issue of higher BER at higher Q, we propose the application of
the Neyman-Pearson test in the PUF protocol.

4.1 Principle

The Neyman-Pearson framework provides a statistically rigorous method to dif-
ferentiate between a legitimate device and an adversarial device. It takes ad-
vantage of the BER knowledge for each challenge. By the Neyman-Pearson
Lemma [24, Theorem 11.7.1], this test is uniformly most powerful at level α.
In other words, for fixed level of security (probability to accept an adversary)
this test will minimize the probability to reject a legitimate device.

The proposed protocol works by using a fixed number of challenges, say n, to
authenticate a device and by using their associated BER. Leveraging the BER
knowledge helps in a sense to discard the least reliable response and consider
reliable responses in the test outcome while not disclosing to the adversary which
challenge response pair is unreliable.

The Neyman-Pearson test aims to distinguish between two hypotheses: the
null hypothesis H0 and the alternative hypothesis H1, while focusing on control-
ling the probabilities of two types of errors. This test maximizes the probability
of correctly rejecting H1 (i.e., the power of the test) for a given threshold, ensur-
ing that false positives do not exceed. In the context of device authentication,
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the Neyman-Pearson test can be used to distinguish between a legitimate device
H0 and an adversary device H1. The attack efficiency is characterized by:

– The probability of rejecting the hypothesis that the device is legitimate (H0)
when it is actually legitimate: false negative or missed authentication).

– The probability of accepting the hypothesis that the device is illegitimate
(H1) when it is actually an adversary: false positive or false authentica-
tion.

4.2 Steps of the Neyman-Pearson Test

Four steps are required to carry out the test:

1. Formulate the hypotheses:

H0 : The device is legitimate,
H1 : The device is an adversary.

2. Choose a threshold: The threshold k defines the boundary for authentica-
tion process, it is chosen to yield a separation between the two hypotheses.

3. Define the rejection region: The test is based on the likelihood ratio:

α =
L(R|H1)

L(R|H0)
=

∏n
i=0 BER(Ci)

ei (1− BER(Ci))
(1−ei)(

1
2

)n (9)

where L(R|H0) and L(R|H1) are the likelihood functions under the hypothe-
ses H0 (legitimate device) and H1 (adversary device), respectively. Here, R
represents the n responses from the device, and the likelihood ratio α is
computed to compare the hypotheses.
In the formula, BER(Ci) represents the BER for the i-th challenge, and ei
denotes the observed error for the i-th challenge. The test rejects H0 if the
likelihood ratio α is less than threshold k. In particular, errors on reliable
challenge will be heavily penalized while errors on unreliable challenges are
less significant (in the extreme case where a bit error rate is maximal equals
to 1

2 an error is completely ignored by the test).
4. Make a decision: Based on the observed data R, if α < k, reject H0

(consider the device as adversarial); otherwise, do not reject H0 (consider
the device as legitimate).

Overall, this procedure mitigates the high bit error rates of the challenges as
long as some challenges are reliable.

4.3 Design of the PUF Authentication Protocol

The protocol is represented in Fig. 6. The enrollment phase is to prepare the
Neyman-Pearson test by modeling the PUF and BER. The authentication phase
is to check the two hypotheses of the Neyman-Pearson test.

The two phases are described below in a detailed manner:



12 N. Nasir et al.

Server Device

Enrollment Phase

Generate CH CH , i

δd = PUF (CH)
δdi

Di = C−1
Hi .δdi

Store Di

Generate Cref

Cref , j

δref = PUF (Cref )
δref

std(noise) = σ(δref )

Store std(noise)

Authentication Phase

Generates Crandom

and select Q

Crandom, Q

δc = PUF (Crandom)

Rd = NMQQ(δC)
Rd

δC = PUFmodel(Crandom)

Rs = NMQQ(δC)

ei =

{
0, if Rd = Rs

1, if Rd ̸= Rs

where i = 1, 2, 3, . . . , N

BERi(δC) = Perr(Ci)

α = NPtest(BER, e,N)

if α < k, then

{
True, Authenticated,
False, Unauthenticated.

where k = Threshold
Auth/Unauth

Fig. 6: Neyman-Pearson PUF authentication protocol: the enrollment and the
authentication.

1. Enrollment Phase During the enrollment phase, the server collects the
responses of Hadamard challenges. The Hadamard challenges are used because
their response are theoretically uncorrelated [25, 26] and the delay model D of
the PUF can be easily reconstructed by a matrix inversion. This approach allows
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the server to calculate responses for any future challenges without storing a big
set of CRPs. Furthermore, the Hadamard challenges can be used multiple times
to reduce the effect of noise and create a more accurate model by averaging the
raw responses δcH .

To account for the impact of noise during the enrollment phase, the responses
are sampled multiple (j) times during the enrollment phase6. Additionally, the
BER model is created which is essential for the following Neyman-Pearson test.
This BER model estimates the error rates for all challenges, quantifying the
likelihood of errors due to noise, environmental variations, or quantization effects.
The noise’s standard deviation σ is calculated using a reference challenge and
stored for use during the authentication phase. It is used to estimate the BER
for each challenge at a given quantization level.

2. Authentication Phase The server sends a set of n random challenges at
a given quantification Q to the device. The device generates responses Rd using
the PUF. The server, utilizing its stored PUF model, computes the expected raw
responses δC and quantized responses Rs for the same set of random challenges.
By comparing Rd and Rs, it identifies the error ei for each challenge, creating
an error vector e. The BER model is then used to estimate the probability
of error Perr(Ci). The server subsequently applies the Neyman-Pearson test
using the calculated BER for each challenge and the observed errors e from the
comparison between the device’s PUF responses and the expected responses from
the server’s PUF model. The likelihood ration α is computed and compared with
the predefined threshold k. If α < k, the device is authenticated as legitimate;
otherwise, the device is flagged as an adversary.

This PUF authentication protocol offers the following properties:

– The application of the Neyman-Pearson Lemma reduces the likelihood of
false positives and false negatives by carefully choosing the threshold k and
the number of challenges n. k guarantees the best trade-off between the false
positives and false negatives, whereas n decreases both.

– The protocol increases the security for a high number of quantization level,
thanks to NMQ.

4.4 PUF Delay and BER Models

The protocol requires at server side an accurate delay model and BER model.
The build of the models is described below.

Delay modeling

6 We assume that the enrollment of the PUF takes place in a controlled environment,
minimizing temperature and voltage variations as well as external electro-magnetic
radiation.
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The responses obtained from the PUF for the Hadamard challenges are then
used to calculate the delays of the physical elements in the PUF. For the delay
PUF like the Loop PUF, the delay chain consists of M delay elements and the
challenge is M bits long. Hence M Hadamard challenges and their corresponding
responses are used. The delay model of the M elements can be computed using
matrix multiplication, where the inverse of the matrix of M Hadamard challenges
is multiplied by the vector of recorded responses. The delay for the i-th element
is given by:

Di = C−1
i ·Ri. (10)

where C−1
i is the inverse of the Hadamard challenge matrix, and Ri is the vector

of responses for the i-th challenge. This method allows the server to model
the delay characteristics of the PUF accurately and use this model for future
challenge-response calculations without needing to store all CRPs.

BER Modeling

As shown in Fig. 7, the BER requires first the delay model and the noise
model of the device. Then the quantization is executed according to the quanti-
zation level Q.

Hadamard
challenges

Noise
estimation (Σ)

PUF delay
model

NMQ
thresholds

Q

BER
model

Fig. 7: BER estimation for Neyman-Pearson PUF Authentication Protocol

Noise model: At the enrollment phase, the server gathers several raw responses
δref for reference challenge Cref to estimate the noise affecting the PUF. The
standard deviation of the noise, namely σ(noise), is calculated based on these
repeated observations.

More formally, we have

σ(noise) =

√√√√ 1

N

N∑
i=1

(δrefi − µref )
2

. (11)

where:

– δrefi is the raw response to a reference challenge in ith iterations,
– µref is the mean response over N iterations,
– N is the number of iterations or repeated raw responses collected.

By storing σ(noise) at the enrollment phase, the system can later predict how
much variation is expected in the responses during the authentication phase.
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BER model: During the authentication phase, the BER is estimated by ana-
lyzing the probability of error in a response derived from the server-side PUF
model, denoted as δs, when subjected to noise characterized by a standard de-
viation σ(noise).

Fig. 8: BER estimation for a single challenge with Q = 4.

Figure 8 visualizes the relationship between the distributions of the PUF
response values (in blue) and the measured distribution at δs (in red). The
blue curve represents the distribution of the responses from the server-side PUF
model. These values can vary slightly around a central value due to natural
variations in the PUF’s physical characteristics. The distribution is modeled as
a normal distribution as follows.

pdf(δ) = N (0, Σ2). (12)

where Σ2 represents the variance of the PUF response values. The red curve
represents the measured response, which is the actual PUF response corrupted
by noise. The noise is modeled as by a normal distribution as N (0, σ2).

The error probability (shaded region) refers to the likelihood that the mea-
sured response is different from the actual PUF response. If the response is close
to a threshold (the vertical dotted line), this likelihood increases. If the mea-
sured response lies in the overlapping region between the two curves, there is
a higher chance of an error. The larger the overlap between the PUF response
distribution and the measurement distribution, the higher the BER.

5 Results and Observations

5.1 Experimental Setup

The experiments were conducted on sixteen Basys3 FPGA boards, which are
based on the Xilinx Artix-7 28nm technology. As a multi-bin delay PUF, we
used a Loop PUF [12] with a delay chain of 64 elements and a δC response of
16 bits.



16 N. Nasir et al.

5.2 Neyman-Pearson PUF Authentication Protocol: Safety Window
for Threshold

The safety window in the Neyman-Pearson PUF authentication protocol refers
to the gap between the α-PUF and α-adversary values. This window plays a
crucial role in distinguishing between legitimate devices and adversaries during
authentication. A larger safety window indicates a significant difference between
the responses of the PUF and the adversary, reducing the likelihood of wrong
authentication. When the safety window is wide, the system can more reliably
differentiate between legitimate responses and random guesses made by adver-
saries, even in the presence of noise or environmental variations. Conversely, a
narrow safety window increases the risk of false positives or false negatives, as
the adversary’s response values may be too close to the legitimate PUF values.
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Fig. 9: Neyman-Pearson PUF authentication protocol with Q = 16: the legiti-
mate PUF vs the adversary.

Figure 9 shows the fluctuation in α-PUF and α-adversary due to system
noise and physical factors, and predicts a region of safety to define a threshold.
The green region in each graph represents the safety window, within which a
threshold can be defined based on security requirements. The threshold is set
closer to α-PUF to minimize the risk of false positives, which occur when an
adversary is mistakenly accepted as a legitimate PUF. It can be observed that
with a small number of challenges, it is difficult to distinguish between the PUF
and the adversary as shown in Fig. 9(a). Therefore, it is crucial to choose a
sufficient number of challenges for secure and reliable authentication. Fig. 9(b)
shows that a safety window (in green) is obtained with more challenges.

However, the safety window decreases with an increase in the quantization
level, requiring more challenges to maintain the protocol’s reliability.

5.3 False Authentication Probabilities

Figure 10 represents two probability distributions in the context of an authen-
tication protocol. The safety window depends on the proximity of these two
distributions. Below is a breakdown of the components and what they represent:
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– Blue Curve (PUF): This curve represents the probability distribution
of responses from a legitimate PUF. In an authentication scenario, these
responses are from a trusted device or system.

– Red Curve (Adversary): This curve represents the probability distribu-
tion of random responses from an adversary.

– Threshold (Black Dashed Line): The vertical line represents the decision
boundary or threshold. Responses to the right of this line are classified as
legitimate, while those to the left are classified as adversarial.

– Shaded Region (Red): The shaded region represents the False Positive
Rate (FPR). It corresponds to the portion of the adversary’s responses (red
curve) that are incorrectly classified as legitimate responses.

(a) Using less challenges (b) Using more challenges

Fig. 10: Neyman-Pearson PUF Authentication Protocol: False Authentication
Probability

In Fig. 10(a), the false positive region is the area under the red curve to
the right of the threshold, indicated by the black dashed line. The threshold is
chosen such that there is no false negative for all the challenge sets. Thus the false
negative rate is less than the inverse of the number of sets. This shaded region
highlights the probability that the adversary’s response, despite originating from
a non-legitimate source, is incorrectly identified as a valid response by the server.
The larger the shaded region, the higher the likelihood that the adversary will be
able to deceive the authentication server. In particular, Fig. 10(b) shows a very
small false positive region, which implies a very low probability of incorrectly
accepting the adversary as legitimate.

Table 1 provides the range false authentication probability for different num-
bers of challenges and various quantization levels Q in an authentication protocol
using 16 PUF devices. The rows represent different numbers of challenges (e.g.,
n equals 50, 100, 150, etc.), while the columns represent different quantization
levels Q ∈ {4, 8, 16, 32}. Table 1 shows that the false authentication probability
generally decreases as the number of challenges increases, while as the quantiza-
tion level increases, the false authentication probability increases, highlighting
the trade-off between security and complexity.
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Table 1: Range of false authentication probability for 16 different PUFs.

Number of
challenges

Q = 4
(Avg Rel: 93.7%)

Q = 8
(Avg Rel: 86.6%)

Q = 16
(Avg Rel: 72.5%)

Q = 32
(Avg Rel: 60.5%)

50 0.008 - 0.055 0.052 - 0.119 0.115 - 0.268 0.220 - 0.361
100 0.000 - 0.011 0.006 - 0.035 0.046 - 0.140 0.159 - 0.315
150 3.605 · 10−5 - 0.001 0.002 - 0.012 0.016 - 0.104 0.073 - 0.255
200 1.345 · 10−6 - 3.134 · 10−4 0.001 - 0.004 0.010 - 0.068 0.050 - 0.211
250 1.220 · 10−5 - 2.509 · 10−4 2.527 · 10−4 - 0.002 0.006 - 0.044 0.034 - 0.168
300 1.090 · 10−9 - 2.285 · 10−7 1.006 · 10−5 - 0.001 0.002 - 0.034 0.036 - 0.134
350 2.125 · 10−10 - 2.484 · 10−7 1.250 · 10−5 - 1.291 · 10−4 0.001 - 0.029 0.024 - 0.129
400 1.221 · 10−6 - 1.781 · 10−5 3.727 · 10−6 - 8.169 · 10−4 0.001 - 0.015 0.005 - 0.105
450 1.607 · 10−9 - 3.337 · 10−7 1.478 · 10−6 - 1.986 · 10−4 2.252 · 10−4 - 0.007 0.006 - 0.079
500 1.004 · 10−10 - 1.195 · 10−7 4.542 · 10−6 - 8.002 · 10−6 2.105 · 10−4 - 0.004 0.004 - 0.076
550 1.021 · 10−13 - 4.862 · 10−10 1.579 · 10−8 - 2.908 · 10−7 1.812 · 10−5 - 0.001 0.004 - 0.065
600 0.0 - 1.519 · 10−12 1.014 · 10−8 - 1.576 · 10−5 2.435 · 10−5 - 0.001 0.004 - 0.052

For each number of challenges, the false authentication probability generally
increases as the quantization level Q increases. This suggests that higher val-
ues of Q require higher number of challenges for authentication but it provides
better security against ML attacks. For small numbers of challenges (e.g., 50
challenges), the false authentication probabilities are higher for higher values of
Q, meaning the authentication server is more vulnerable to attacks. As the num-
ber of challenges increases, the false authentication probability tends to decrease
across all quantization levels. For example, with 400 challenges, the false authen-
tication probability is as low as 2.4-4.3% for Q = 32, and with 600 challenges, it
decreases further to 0.1-1.6%.

6 Discussions

6.1 Comparison with Other Protocols

Contrary to protocols of the literature which are to increase the security against
ML attacks, the proposed protocol relying on the Neyman-Pearson test is to in-
crease the reliability, as the security is ensured by NMQ. As far as we know, the
only lightweight security protocol against ML used in the literature is the Lock-
down protocol [21]. This countermeasure has a relatively low complexity (PUF
+ PRNG). The countermeasure in our study is the PUF which takes advantage
of the NMQ quantization. The complexity added by NMQ is very low (compara-
tors for quantization stage). This NMQ-PUF is particularly unreliable when the
security is high. The goal of the proposed protocol is to enhance its reliability.
Hence, the Lockdown protocol can be used jointly with the Neyman-Pearson
test. Table 2 summarized the main properties of 3 scenarios according to the cri-
teria of security, reliability and hardware complexity. Concerning the reliability,
it is indicated if it is exploited in order to strenghten the authentication process.
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Table 2: Comparison of 3 different scenarios.

Lockdown This work: NMQ + Neyman-Pearson Lockdown + Neyman-Pearson

Security proven high with high Q proven
Reliability not exploited exploited exploited
Complexity PUF + PRNG multi-bin PUF + quantizer PUF + PRNG

6.2 Impact of Environmental Changes

The delays δC of a delay PUF are greatly impacted by the temperature, the
voltage and the device aging [27]. Consequently, the quantization thresholds of
NMQ have to be adapted as their values is the standard deviation Σ of the δC
multiplied by constant numbers. A first scenario is to use a specific process be-
tween the PUF and the server to assess the new environment and consequently
update the thresholds. A simpler solution when using a multi-bin PUF based on
ring oscillators (ROs), is to use a reference clock which follows the same envi-
ronmental changes. The PUF response corresponds to a difference of oscillations
between two configurations of the RO (Loop PUF) or two different ROs (RO
PUF). Let’s call Tosc1 and Tosc2 the oscillation period of each RO, respectively.
The measurement window lasts K oscillations of each RO configuration, K is a
constant. During this time window, a counter is incremented with a clock hav-
ing a period T . At the end of the measurement the counter reaches respectively
n1 and n2. Hence the PUF response before quantization is n1 − n2 and can be
written:

K · Tosc1 = n1 · T, K · Tosc2 = n2 · T (13)

⇒ n1 − n2 =
K

T
· (Tosc1 − Tosc2) (14)

If there is an environmental change with a factor α on Tosc1 and Tosc2, the
response is changed to n1−n2 = α·KT (Tosc1−Tosc2). Consequently the thresholds
have to be updated. Now, if the clock period T comes from another ring oscillator
which is also impacted by a factor α, the clock period becomes αT and the
response stays the same whatever the environment. This solution assumes that
all the elements of the PUF are impacted in the same way and that the noise
remains stable over the measurement time. More experiments will be carried out
to verify this hypothesis in a future study.

6.3 Scalability

The Neyman-Pearson test requires the knowledge of the BER for every challenge
in order to be fully scalable. Thanks to the Hadamard challenges used during the
enrollment phase, the BER model build on the server is fully generic. During the
authentication phase, the BER for a given challenge is computed from this model.
Therefore, the server does not need to store the BER for every challenge, thus
ensuring scalability. On the client side (the PUF), no additional computation is
needed.
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6.4 ML Techniques with Reliability as Feature

If the considered adversary model is such that the PUF interface is open and
the attacker can replay the CRPs or try new challenges, the reliability of the
CRPs can be measured and the ML could use it as a feature. It has been shown
that the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [15] is
particularly efficient to attack the XOR-PUF by using the reliability information.
More recently the gradient-based ML attack [28] has shown to be even more
powerful against the interpose-PUF. In case of the NMQ-PUF, the reliability-
based attacks should definitely be considered but they are not straightforward
to implement in a multi-threshold PUF. They are parts of future works.

6.5 Feasibility for IoT applications

The main properties to meet for the IoT domain are the cost, real-time and low-
power. The cost, or hardware complexity, remain low for the NMQ-PUF as the
only add-on is the quantizer with multiple thresholds. The real-time constraint
may be more difficult to respect as a multi-bin PUF generally relies on a ring
oscillator (RO-PUF) and could require at most 1ms to output a response. Hence
the authentification process can last a few 100ms. The multi-bin PUF relying
on Ring oscillators is not optimal in terms of power consumption compared
to arbiter PUF. However, in addition to the low-power RO-PUF proposed in
the literature as [29, 30], the authentication process remains a relatively short
operation with a limited energy consumption when the PUF is in standby mode
after authentication.

7 Conclusion

Non-Monotonic Quantization strengthens the resistance of multi-bin delay PUFs
such as RO-PUFs against ML attacks by introducing non-linearity at the quan-
tization stage. However, the price to pay for this security increase is a high drop
of reliability. By using the Neyman-Pearson Lemma in the PUF protocol, we
show that the native unreliability caused by the NMQ quantization can be tack-
led. More precisely, the unreliability is exploited to help distinguishing between
legitimate and adversarial devices. We validated the efficiency of an authenti-
cation protocol relying on both an NMQ-PUF and the Neyman-Pearson test.
The results obtained with a very high number of quantization levels display a
perfect resistance against ML, thanks to NMQ and noise, and an authentication
success without failure, thanks to the Neyman-Pearson test. Future works will
be to validate the efficiency of the protocol to face environmental changes and
to consider new approaches of reliability based attacks.
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A Neural Network Structure and Parameters

In Tab. 3, we detail the network structure of our CNN and MLP models against
NMQ-LPUF in Sec. 3.4. In addition, we implemented an adaptive loss function
that is halved by every 10 epochs starting from 0.01 (which shows better attack
performances among several settings).

Table 3: Network architecture of CNN/MLP models, and training parameters.

Network Architecture Epochs Batch Size

CNN

Conv1D(16, 64)
BatchNormalization
Dropout(0.2)
Conv1D(10, 64)
BatchNormalization
Dropout(0.2)
Flatten()
Dense(32)
Dropout(0.2)
Dense(2): Output layer

50 1000

MLP

Flatten()
Dense(64)
Dropout(0.2)
Dense(32)
Dropout(0.2)
Dense(2): Output layer

50 1000


