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Abstract. The success of horizontal side-channel attacks depends heav-
ily on the correct extraction of points of interest, which are expected to
contain relevant leakages, and on the quality of the traces. If the latter
is not sufficient, this will consequently degrade the identification of leak-
age candidates and often render attacks inapplicable. This work aims
to assess the relevance of neural networks in the unsupervised context
of horizontal attacks by proposing two methods with alternative objec-
tives to mitigate noise artefacts from the input signal. Their application
results in better traces exploitability when using clustering-based hori-
zontal attacks.
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1 Introduction

Horizontal side-channel attacks are a family of attacks which rely on the use of a
single acquired trace for exploitation. As the presence of masking or randomiza-
tion makes the use of multiple traces irrelevant, they are often sought as the last
attack vector. However, their applicability and success capability heavily relies
on the quality of the provided patterns (processed trace). As no profiling phase
nor leakage assessment is available in this attack scenario, it can often be hard
to improve the patterns quality by reducing noise or digital filtering, without
the risk of leakage degradation.

On the other side, neural networks are widely used for profiled side chan-
nel attacks [17,15,6,24,3]. They aim at building a model that characterizes the
leakage manifestation on an open device, which can then be applied to a tar-
get device during the attack phase. While this approach has been shown to be
efficient, it requires knowledge of the labels associated with the traces/patterns
to be applied. In fact, this is mandatory for network training based on an error
objective, since their weights are updated based on the error between predicted
and ground truth labels.

This rise of neural network architectures in the supervised side-channel analy-
sis domain leads to the question of their applicability in an unsupervised context,
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and more precisely for horizontal attacks. While proposed supervised methods
have shown competitive performance against more traditional methods for pro-
filed attacks (such as template attacks [7]), their applicability in an unsupervised
context is far from straightforward. In fact, training objective such as error-based
optimization cannot be considered since no training data (thus no true labels)
is available. Instead, alternative training mechanisms that are applicable in this
context should be explored.

Within this context, this work provides several contributions to improve the
quality of side-channel traces and thus their exploitability. Among them are:

– the identification and quantification of abnormal values in the input data and
their impact on the selection of points of interest (PoI). This includes the
presence of outliers or extreme values. These latter values result in truncated
statistical distributions at the end of traces capture because of a specific
setting, intentional or unintentional, of the digital sampling oscilloscope.

– the correction of anomalies through the application of a robust autoencoder
(RAE) framework [25,14], in a completely unsupervised manner.

– their mitigation in a self-supervised manner using anomalies models, based
on generative networks (GAN) [12].

Correcting outliers and extreme values can be beneficial for many side-channel
analyses. However, it is expected to be of particular interest in the context of
horizontal attacks. In fact, due to the randomization of the scalar or secret
exponent, only a single trace can be analyzed at a time to try to recover the
secret. Thus, any outlier can cause the loss of a scalar or exponent bit to be
recovered. This explains why focus is made on this context in the rest of the
paper, and more particularly on clustering-based horizontal attacks.

To that aim, the remaining of the paper is organized as follows. Section 2
recalls the context of clustering-based horizontal attacks and derives the way
adopted to check the soundness of the proposals. Section 3 deals with the iden-
tification of abnormal values, which include outliers and extreme (truncated)
values. Section 4 illustrates the effect of such values on univariate PoI selec-
tion. Section 5 highlights the limits of traditionally used anomalies mitigation,
while sections 6.1 and 6.2 propose two correction methods using either a Robust
Auto-Encoder (RAE) or a specific Cycle-Generative Adversarial Network (Cy-
cleGAN), respectively. Section 7 presents and discusses the results obtained on
the publicly available datasets considered. Finally, the 8 section concludes the
paper.

2 Clustering-based horizontal attacks and figures of merit

This section describes the working foreground that have been adopted for the
development and evaluation of the proposed contributions. It first recalls the
backbone of clustering-based horizontal attacks. Then, the figures of merit con-
sidered to evaluate the benefits of the proposed solutions to mitigate outliers and
extremes values are given and discussed. Finally, it ends by presenting the two
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publicly available datasets that have been selected to evaluate the soundness of
the proposals.

2.1 Clustering-based horizontal attacks

Horizontal attacks based on unsupervised clustering are typically carried out in
two or three steps, with the third step being optional. Considering, for example,
the proposals of Perin et al. in [21,20], these steps are:

– Step 1 : Selecting points of interest (PoI): Usually, the selection of the
PoI is done thanks to a univariate analysis of each time sample of aligned
patterns (traces). There are several ways to analyze each time sample. Some
proposals recommend analyzing their statistical distribution, assuming that
PoIs are expected to be a balanced Gaussian mixture of two normal distri-
butions [19,9]. Others like [21] suggest to cluster each time sample and to
compute the DoM (Difference of Means), or extended but related figures of
merit [20] between each cluster to identify PoI.

– Step 2 : Guessing the scalar or exponent bits: After identifying and
ranking the PoIs, a clustering algorithm (e.g., k -means or expectation max-
imization) is applied to a subset of the PoIs to obtain an estimate of the
secret scalar or exponent.

– Step 3 : Correcting the guess: As a possible last step, one could apply
a correction phase to the estimation of the scalar or exponent bits, using a
neural network as described in [20,4]. However, the efficiency of these net-
works depends significantly on the percentage of bits that are already correct
in the estimate provided by the previous step.

Of course, in a supervised context, the first step could be performed in a guided
manner thanks to the knowledge of the secret scalar or exponent bits. In this
way, one could use the t-value as a leakage metric.

2.2 Figures of merit

As described above, clustering-based horizontal attacks are performed in two or
three successive steps. The effect of outliers and extreme values is not expected
to be known on each of this step, and furthermore could be cumulative. It is
probably the case, since it is showed that the quality of traces can drastically
affect the quality and efficiency of such attacks [4].

The evaluation of the soundness of techniques that allow to mitigate the
effects of outliers and extremes could thus be performed according to different
points of view.

From the point of view of the end application, the success rate of an attack
could be a good measure of the efficiency of such techniques. In this paper, it
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makes use of the Bit Recovery Rate (BRR) [9], which corresponds to the per-
centage of secret bits successfully recovered through the clustering partitioning
process. This metric is obviously not available during the attack but is used here
in a study purpose.

From a pure leakage point of view, considering leakage assessment metrics
such as t-values, either applied in a supervised or unsupervised manner, might
be a more meaningful solution.

Global indicators are also considered for measuring the global changes in the
patterns, namely the Signal to Noise ratio (SNR) and the Mutual Information
(MI) between the patterns and associated labels.

As a last criterion for evaluation, the evolution of the number of values iden-
tified as outliers or extremes has been considered as a natural indicator to char-
acterize the efficiency of the proposed mitigation process. As the mitigation is
conducted in an entirely unsupervised manner, it is important to ascertain the
extent to which the proposed approaches can correctly identify such values.

In the remainder of this paper, these three criteria will therefore be considered
in turn. First, the capability of a technique to identify and correct outliers and
extremes will be assessed by considering the percentage of outliers before and
after mitigation. Second, the proposed method will be evaluated to determine
whether it emphasizes the leakage manifestation by computing the t-values in a
supervised manner. Third, the bit recovery rate (BRR) obtained with the attacks
described in [21] and [9] is considered.

2.3 Considered targets

Two public datasets that target Curve25519 curve from µNaCl library on a
STM32F4 are used for this study, namely Cswap Pointer and Arith from Nasci-
mento and Chmielewski work [19]. These datasets are known to be at the same
time leaky but very noisy as depicted by Fig. 1. It shows random patterns from
both datasets. The presence of outliers and extreme observable values (-128 or
127) at many time points is clearly visible and supports the choice of these
datasets as a suitable target to demonstrate the soundness of this work propos-
als. The choice of these datasets is also sustained by the fact that several papers
have reported the success rates of different horizontal attacks applied to these
datasets [20,9,4] . This is interesting for a comparison purpose. For reference,
Fig. 2 shows the supervised t-value for the two considered datasets.

3 Identification and quantification of outliers

The identification of outliers and extreme values is an old statistical topic that
could potentially be revisited depending on the end application. In this paper,
two methods have been considered to identify such abnormal values.

Extreme values During traces acquisition, the oscilloscope’s vertical resolution
during digital sampling determines the number of values a signal can take. For
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Fig. 1: Random patterns from Cswap Pointer and Cswap Arith datasets. [19]0 1000 2000 3000 4000
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Fig. 2: t-value on each temporal point accross all patterns, for the two considered
datasets.

example, a high-end oscilloscope with an 8-bit resolution can produce waveforms
with a very large number of points, but all with values between -128 and 127.
In case of a misconfiguration (intentional or not) of the acquisition hardware,
the statistical distribution of some points could be truncated. This results in a
large number of extreme values in the measurement of these points, which do not
contain any valuable information. In this work, such values are called extremes.
Considering signed values, saturated values for 8-bit and 12-bit resolution would
respectively correspond to ξ(8) = {−128, 127} and ξ(12) = {−2048, 2047}. For
the rest of this work, only ξ(8) is considered as the studied datasets are encoded
on 8-bit. Thus a sample x would be flagged as saturated if x ∈ ξ(8).

Interquartile range outliers Some noisy behaviors generated by the target
or measurement environment can also introduce additional components into the
distribution of time samples that can span the entire oscilloscope range up or
down to extreme values. Values associated with these parasitic components are
referred to as outliers in the remainder of this paper.

In the analysis of distributions, an outlier is defined as a value that is
statistically significantly different from the others. If the interquartile range
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is considered (as in [19]), this corresponds to samples outside of the range
R = [Q1−α IQR, Q3+α IQR], where the IQR = Q3−Q1. Usually one considers
α = 1.5. Thus, all samples x with a high deviation from the quartiles such that
x /∈ R are usually considered as outliers.

These definitions of extremes and outlier’s models are interesting because
they can be applied in an unsupervised context. Their application to the two
datasets considered is thus straightforward. Fig. 3 shows the percentage of such
values for each time point. As expected from a first glance at the traces, a signif-
icant number of time points show a high number of anomalies for both datasets.
Some time points even show a percentage of detected anomalies (extreme val-
ues) close to 100%. This means that in the current state of trace quality, there
is almost no exploitable leakage at these time points. Hence, the choice of these
datasets to estimate the efficiency of any solution that allows to reduce outliers
and extremes seems reasonable.
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Fig. 3: Percentages of anomalies (outliers + saturated values) in Cswap Pointer
and Arith datasets.

4 Impact of anomalies on the PoI selection process

When performing a clustering-based horizontal attack, the selection of the PoI
(step 1) is done by applying a clustering algorithm to each time point of the
aligned patterns and selecting some points highlighted by a distinguisher such as
the DoM or the t-value. The relevance of the selected point is, of course, related to
the quality of the traces. Indeed, the Gaussian noise, outliers and extreme values
of the measurement could affect the efficiency of both the clustering algorithm
and the distinguisher. Regarding outliers and extreme values, the impact could
be huge, especially on the result provided by the clustering algorithm. Indeed, few
outliers or extreme values could be sufficient to significantly shift the centroids
and as a results bias the values provided by the distinguisher.

By way of illustration, Fig. 4 shows the effect of the extreme values on clus-
tering results obtained with the k -means applied to sampled data from an uni-
variate Gaussian mixture p(x) = π1N (µ1, σ1) + π1N (µ2, σ2), with parameters



7

π1 = π2 = 0.5, µ1 = 1, µ2 = 4, σ1 = σ1 = 0.5. The x-axis indicates the per-
centage of values drawn from the underlying mixture that have been replaced by
extreme values equal to 10. This process has been averaged over 10 experiments.
As shown, the effect first remains moderated up to a certain value, in that case
only 10%, above which there is a sudden and significant shift of the centroid
values and of the associated DoM. Above this threshold, distance value involved
in the k -means is mostly dominated by the presence of sufficient extreme values.
In turn, this induced shift causes a rapid decrease in the bit recovery rate, i.e.
the correctness of the guessed scalar or exponent bits. This trend (and more pre-
cisely the suddenness of the shift) clearly suggests that even correcting extreme
values could be beneficial in some cases to exploit the leakage or bring back some
time samples of traces in the exploitable domain.
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Fig. 4: Effect of extreme values on (Left): The BRR, (Right): the clustering
centroid values and DoM.

In a similar fashion, the impact of outliers on the clustering capability has
been studied. Considering the same data as before drawn from an univariate
mixture distribution with same parameters, a percentage of random values from
the distribution is replaced with Q3 + α IQR. This is done with increasingly
percentage and various α values. Results are showed on Fig. 5. Ones can notice
the same behavior as in the previous experiment. Indeed, the BRR falls down
towards 50% abruptly given a sufficient percentage of data on the right tail or
alpha value. This shows that a sufficiently low α value should be used. In this
work, α = 1.5 is used.

Still, one may wonder if the presence of outliers and saturated values can
negatively impact the PoI selection process on real data. Thus, some leaking
points (in terms of high t-values) of the Cswap Pointer dataset have been cor-
rupted. More precisely, some values of time samples with a significant leakage
have been progressively replaced with extreme values the evolution of the BRR
and centroids with respect to the percentage of corrupted values has been ob-
served. Fig. 6 shows the results obtained considering only the first 5000 patterns
of Cswap Pointer, for time points 640 and 168. A supervised leakage analysis
using the t-test gave t-values of 300 (the highest value obtained across all points)
and 116 respectively. The number of extreme values (either -128 or 127) before
corruption was counted as 2 for both points that differs mainly by their mean
and standard deviation. The figure clearly shows that a few extreme values (7%
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Fig. 5: Resulting BRR when replacing random values by right tail of the global
distribution, with different percentage and alpha value.

and 2% respectively) are sufficient to completely deceive the k -means and cause
a drastic reduction of the BRR from 92% and 70% respectively to values close to
50%. It seems that these few extreme values are indeed sufficient to significantly
attract the centroids (at least one of the two) found by the k -means close to
them. Hence, it is straightforward to see that noisy sets of traces as the ones
considered for this study would be harder to exploit using a clustering based
strategy. However, ones can wonder if the mitigation of such abnormal values
would be beneficial for the exploitation.

5 Anomalies mitigation through ablation

As seen in the previous section, clustering process in the presence of saturated
values or outliers can results in incorrect clusters estimation. From this, it would
be necessary to take action to mitigate such values. Outliers mitigation is a
well-studied topic in various statistical domains [10,1].

One proposal can be to replace identified anomalies values based on the val-
ues of other samples. For side channel analysis purpose in [19], considering the
outliers model described above, authors proposed the following mitigation strat-
egy. For each time point, it consists in replacing the value of identified outliers
with the median of non-outliers on this time point. This could be applied as well
for saturated values x ∈ ξ(8). This can be a relevant approach if the percentage
of anomalies is really low, but it has however no (or very low) beneficial effect
on the quality of the PoI selection procedure in case of highly noisy context.
Furthermore, this can have the consequence to degrade the classes discrimina-
tion through clustering, as the formed distribution tends towards an unimodal
Gaussian distribution as the number of outliers increases.

Another straightforward approach can be to remove time points if the per-
centage of anomalies across all patterns is higher than a defined threshold. This,
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however, can has a doubled-edged effect. Firstly, this can result in the removal
of leaking time points depending on the arbitrary chosen threshold, thus in a
decrease of leakage information in the patterns. Furthermore, in cases with high
amount of anomalies (as seen on considered datasets in this work), this would
have the effect of removing the majority of time points. For reference on Cswap
Pointer and Arith datasets, a threshold above 5% of anomalies, would result in
34.8% and 53.65% respectively of time points removed.

From this status, the motivation behind this work lies as follow. Using a
neural network unsupervised approach, it hopes to significantly increase the ex-
ploitability of the leakage present in some time samples by correcting outliers or
extremes they may contain. Additionally, as the correction process is unsuper-
vised, it should not have a degradation effect on the leakage.

6 Neural based anomalies mitigation

This sections aims at studying neural architectures candidate that could be rel-
evant for anomalies mitigation in a horizontal attack context. To do so, said
architecture would require to be trained in an unsupervised manner (or semi-
supervised), without knowing the associated value to each pattern. For this work,
two architectures have been studied, which training is based on alternative objec-
tive, applicable in the context of horizontal attacks. These methods are applied
on the whole patterns, without discarding any time points.
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6.1 Unsupervised mitigation with RAE

The first approach considered in this work to mitigate (or correct) outliers and
extremes is an unsupervised approach. It consists of a variation of the autoen-
coder architecture. While the use of autoencoders for multivariate leakage ex-
traction can give relevant results in noiseless (or low noise) contexts (as well as
projections methods such as the Principal Component Analysis), it often fails in
noisy ones [8]. Instead, a variant of the vanilla autoencoder, known as the robust
autoencoder (RAE) [25,14] is considered in this paper. The RAE can be seen as
non-linear generalization of the Robust Principal Component Analysis (RPCA)
[5], trained using gradient descent. The idea behind the RPCA/RAE is to re-
cover a low rank matrix L from corrupted matrix X and extract artifacts into
an sparse noise matrix S. It can be described by the following decomposition:

X = L+ S (1)

where each term in this study context corresponds to:

– X, the input matrix, containing noisy artefacts, corresponding to the pat-
terns obtained after the traces acquisition and pre-processing (verticalization
and alignment procedure).

– L, the clean matrix, which should be free of abnormal values after the anoma-
lies mitigation process,

– S, the noise matrix, from the difference S = X−L, which is a sparse matrix
containing the positions of the extracted noise artefacts.

Rather than attempting to project relevant information into a low-dimensional
subspace and thus focusing on its compression capability as traditional autoen-
coder would do, the RAE is used to mitigate anomalies in their reconstruction
phase with an objective function consisting in two terms:

L(θ, ϕ) = ||L−Fθ(Eϕ(L))||2 + τ ||S||1 (2)

where the left term is the autoencoder reconstruction error optimized by gradient
descent (with Eθ and Fϕ the encoder and decoder networks respectively) and the
right term is the proximal optimization of S. The proximal optimization of the
ℓ1 norm corresponds to the shrinkage operator:

proxℓ1(x, τ) =


x− τ if x > τ

x+ τ if x < −τ

x if x ∈ [−τ, τ ]

(3)

where the parameter τ defines the level of sparsity of S such that small τ will
encourage more data to be identified as noise or outliers.

Since the combined objective of Eq. 2 cannot be optimized as a whole, it
should be split into two sub-objectives that can be optimized by the alternating
direction method of multipliers (ADMM) algorithm. It consists of alternately
optimizing one sub-objective while keeping the other fixed. This leads to the
following ADMM optimization procedure for the RAE.
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1. Train the autoencoder to minimize the reconstruction error of L = X − S
using gradient descent (left term of Eq. 1).

2. Derive the noisy matrix S = X − L.
3. Minimize S by proximal optimization (right term of Eq. 1).

These three steps are repeated until convergence is reached, which is defined as
the point at which no change is observed in the matrices. Details about network
architecture and parameters are described in Appendix A. It is important to note
that the mitigation process can have an impact on non-abnormal points. Indeed,
as the RAE produces synthetic patterns during the reconstruction process, which
are then used as new patterns, it can affect all values of all time points. In a
side channel context, this could thus affect the observed leakage levels. This
method was applied to the patterns of the two datasets considered. An identical
network architecture was used for both datasets. The analysis of results that
were obtained considering the cleaned matrix L are presented in Section 7.

6.2 Self-supervised mitigation with CycleGAN

As an alternative approach to mitigate outliers and extremes values, the appli-
cation of a self-supervised framework may be a more interesting and controllable
solution. Indeed, as described in section 3, it is possible to identify abnormal val-
ues in a completely unsupervised manner. Thus, it allows to control the learning
process of the neural network used for anomalies mitigation to ensure that only
the identified abnormal values are corrected, while the remaining data points
remain unchanged. This approach thus differs from the one considered by the
use of the RAE described previously. To that aim, an approach based on the
CycleGAN architecture that trains on pairwise sets of data is therefore pro-
posed. Such architecture is made up from a pair of two GAN, [12], that is two
generators GA, GB and two discriminators DA, DB . GAN models are optimized
through adversarial training, where a discriminator D aims at distinguish train-
ing samples as real or fake, while a generator G tries to fool the discriminator by
generating convincing examples. The CycleGAN architecture has been widely
applied for cross domains images translation [26]. The objective function of the
CycleGAN is the following:

L(GA, GB , DA, DB) = LGAN(GA, DB , B,A)

+ LGAN(GB , DA, A,B)

+ λLcyc(GA, GB)

(4)

where each GAN objective, LGAN, is defined by:

min
G

max
D

LGAN(G,D,X,Z) = Ex∼X logD(x)

+ Ez∼Z log[1−D(G(z))]
(5)

In addition, a consistency loss, Lcyc(GA, GB), is added to ensure mapping bijec-
tions between domains:

Lcyc(GA, GB) = Ea∼A||GB(GA(a))− a||1
+ Eb∼B ||GA(GB(b))− b||1

(6)
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with λ used to balance terms in Eq. 4. The proposed architecture for mitigat-
ing abnormal values differs from existing approaches in several ways. First, as
a single dataset X ∈ Mn,p(R), (n patterns of p time points) is available for
horizontal attacks, it thus should be split into two subsets, designated as A and
B. These subsets are constructed to contain samples with the greatest disparity
in abnormal values. This is done by first computing the binary anomalies matrix
M ∈ Mn,p({0, 1}) such that each matrix element is:

mi,j =

{
1, if xi,j ∈ ξ(8) ∨ xi,j /∈ R(x:,j)

0, otherwise
(7)

To recall, R corresponds to the interquantile range as defined in Sec. 3 Then,
each pattern pair (ai, bi) is built such that it maximizes the Hamming distance
between their abnormal values:

argmax
i,j∈{1,...,n}

HW(mi,: ⊕mj,:), i ̸= j (8)

Second, multiplexers (mux) are added between the output of generators and the
input of discriminators. Multiplexers are defined as follows:

A′′ = mux(A,GB(B),MA) = (MA ∧GB(B)) ∨ (¬MA ∧A)

B′′ = mux(B,GA(A),MB) = (MB ∧GA(A)) ∨ (¬MB ∧B)
(9)

where matrices MA and MB contains the positions of the anomalies (both out-
liers and saturated values) for subsets A and B. This does not affect the gradients
propagation during the backward phase. The idea behind the application of the
CycleGAN to outliers mitigation is to correct identified abnormal values in A
from non outliers elements from B. This results in the fact that only samples
in the original patterns flagged as abnormal are modified during training. For
the optimization, this ensures that the discriminators DA and DB can train and
backward propagate on the multiplexer outputs (rather than the whole synthetic
patterns from the generators) to provide better judging capabilities. In parallel,
the generators are specifically trained to generate convincing synthetic corrected
points inplace of the anormal ones. The complete proposed architecture for the
CycleGAN framework is shown in Fig. 7. A cycle of the mitigation process is
then given as follows:

1. Calculate the anomalies matrix M (Eq. 7).
2. Split the original input data into two subsets A and B with highest Hamming

distance between pairs of rows of M (Eq. 8).
3. Train the CycleGAN until convergence (Eq. 4).
4. Replace anomalies in initial patterns with generated points through the mul-

tiplexers (A′′ and B′′).

These steps are repeated until ||M ||0 converges, that is when the number
of anomalies reach zero or no changes are observed. Details of the CycleGAN
architecture and optimization process are given in Appendix B. The results of
application of this framework are given in the next section, where its performance
is compared to the RAE correction capability.
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Fig. 7: Proposed CycleGAN architecture with multiplexers. Blue and red colors
show data paths through the architecture.

7 Results & Discussion

In order to assess the efficiency of the proposed neural methods in mitigating
outliers, several metrics were discussed and described in section 2. This sec-
tion presents the results obtained for the two proposed methods, applied on the
considered datasets.

7.1 Percentage of corrected outliers and extremes

Table 1 presents the percentage of anomalies identified using the IQR and ex-
treme values methods before and after the application of the two proposed mit-
igation approaches.

Cswap Pointer Cswap Arith
Before RAE GAN Before RAE GAN

Outliers (%) 4.32 5.36 1.67 5.15 4.73 1.35
Extreme (%) 30.27 1.19 10.22 12.88 0.01 5.19
Total (%) 33.39 6.55 11.85 16.54 4.75 6.49

Table 1: Percentage of outliers and extremes obtained on original patterns, after
applying the RAE and the CycleGAN. Best results are highlighted in bold.

On the two datasets examined, the CycleGAN shows better outlier mitiga-
tion, while the RAE performs better at correcting extremes. Overall, the RAE
shows slightly better results for total anomaly correction. However, the latter
has a greater impact on the extreme than on the outliers in the mitigation pro-
cess and changes all values of the patterns, which could be risky and alter the
leakage.
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7.2 Leakage assessment on time samples

Successful mitigation can be translated to no degradation in the observed leakage
levels. In order to assess the capability of the considered approaches using RAE
and CycleGAN, the Supervised t-test, as well as clustering using k-means and
computing the BRR percentage is done. Fig. 8 displays the difference values
obtained for each time point before and after application of the CycleGAN and
RAE, in a after minus before fashion. In other words, positive values translates
to improvement of the t-values (respectively BRR), while negative values means
that the time point leakage exploitability has been degraded. For many time
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Fig. 8: Metrics difference before and after application of the RAE and Cycle-
GAN. Top: t-values. Bottom: BRR. Positive values correspond to improvement,
negative values to degradation.

points, the mitigation process produces an improvement, which means that the
correction of anomalies allows a better partitioning of classes by the clustering
process. Additionally, some new areas show high BRR values while they were
close to 50% before the mitigation process. This is especially visible for the area
between samples 3500 and 5500 of the Arith dataset. However, these observations
do not allow us to conclude that the information contained in these time points
has increased or is simply more exploitable, which is more likely. This point is
discussed at the end of this section.

It also interesting to observe the distributions of time samples whose BRR has
been drastically increased by the mitigation process. Fig. 9 shows the empirical
p.d.f before and after application of the RAE and CycleGAN of time samples 650
and 168 of Pointer dataset and for time samples 1617 and 3028 of Arith dataset.
The changes in the distribution caused by the application of the CycleGAN is
not visible to the eye. This is to be expected, since only a few percentages of the
points (outliers and extremes values) are corrected by the CycleGAN because
of the multiplexers. Other points are left unchanged, thus preserving the overall
shape and moments of the distributions.
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On the other hand, generated samples from the RAE seems to produce
smoother mixture of normal distributions. This is an expected behavior as the
RAE decomposition produces a completely new and thus changed patterns with-
out any guarantee that the moments and the shape of the distributions (and thus
the leakage) are preserved.

Overall, both methods allow for leakage exploitation through the clustering
process without significant degradation of the input patterns. While unsuper-
vised, these approaches seem to preserve the leakage and seem thus applicable
in the context of unsupervised horizontal attacks.

7.3 Success rate of attacks

To estimate the effect on the end application, the success rates of different attacks
have been compared.

The first attacks applied, before and after outlier and extreme reduction,
consisted of supervised selection and ranking of PoIs with the t-test and then
applying the k -means. Thus, the set of selected PoIs can be assumed to be
close to the optimal one. Fig. 10 shows the BRR versus the number of selected
PoIs ranked according to the t-values. The application of RAE and GAN led
to a slight increase in the BRR obtained on Cswap Pointer and Arith when the
number of selected PoIs is below 50 and 100 respectively, because these points
are only slightly affected by outliers. Above these numbers, the gain in BRR
becomes more significant and is around 30% when the number of selected PoI
remains below 150 and 200 respectively. This is an indication of the soundness
of the proposed mitigation techniques, which delay the fall of the BRR by in-
cluding more noisy and leaking points in the exploitable domain. The second
attack considered is the unsupervised one proposed in [21]. The mitigation of
outliers and extremes with the RAE and CycleGAN was applied either before
the PoI selection (step 1) or immediately afterwards. In both cases, no improve-
ment in the success rate of the attack was observed, regardless of the number of
selected PoIs. It remained around 52%. Further analysis of the results showed
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Fig. 10: BRR vs number of PoI considered when the mitigation of outliers is
applied before PoIs selection and the selection and ranking of PoIs are done in
a supervised manner.

that the effects of the mitigations were insufficient to significantly change the
set of selected PoIs, which is not correct when using the DoM as a distinguisher
on these trace sets. This was not a surprising result, as the number of points
corrected with the RAE or CycleGAN is too limited to significantly change the
DoM values.

Finally, the attack proposed in [9] has been considered. Similarly to what
have been done for the attack reported in [21], the RAE or CycleGAN have
been applied either before or after the selection of PoIs, thus considering a new
set of PoI or the same than those found on raw traces.

Fig. 11 shows the success rate of the attack when the mitigation is done before
the selection of PoIs thus with a new set of PoI. The effect of the mitigation of
outliers obtained on Pointer dataset is limited, in average, to a slight increase of
the success rate. For Arith, the same conclusion can be drawn except that the
BRR values falls down to values close to 50% when more than 80 PoI, instead
of 40, are considered. This indicates that some points that were unexploitable
are now exploitable. The effect of mitigation would have been more valuable on
a dataset where the first 40 PoIs were not present. This is not the case here but
one could concede this could happen. Fig. 12 shows the success rate when the
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Fig. 11: BRR vs number of PoI considered when the mitigation of outliers is
applied before PoIs selection and ranking with the method described in [9].
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mitigation is applied after the selection of PoIs, i.e. considering the set of PoI
found before mitigation. For Pointer datasets, there is no significant change in
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Fig. 12: BRR vs number of PoI considered when the mitigation of outliers is
applied after PoIs selection and ranking with the method described in [9].

the results. Only a slight increase of the BRR is observed. For Cswap Arith,
a similar trend can be observed, where PoIs with indexes 50 to 100 are more
exploitable than before. However, these points are not the same than in previous
the figure. This gives an indication that the mitigation of outliers and extremes
was not sufficient to converge toward the best set of PoI which can be assumed
to be one found in a supervised way.

Overall, the effects of mitigating outliers and extremes on the BRR of the
supervised attack considered are significant, but are limited once PoI selection
is done in an unsupervised manner (at least with the methods considered). This
suggests that the proposed methods for reducing outliers are sound and that
there is significant room for improvement in the way PoIs are selected, which
appears to be the main limiting factor in the success rate of the attacks.

When comparing both approaches, it appears that mitigation before the PoI
selection can produce more unreliable results during the PoI selection than ap-
plying the mitigation after a prior PoI selection. While identified PoI on raw
patterns and after mitigation are almost the same (the overlap of their indexes
is big), in some cases, new PoI which carry leakage are also identified if the se-
lection is applied after the mitigation, especially matching indexes from Fig. 8.
These side-effects from the unsupervised mitigation can affect the attack (posi-
tively or negatively) as showed on Fig. 11. Hence for these datasets a more robust
strategy would be to firstly identify relevant PoI (even they are noisy) and then
apply the cleaning process while keeping these PoI for the attack phase. Another
possible strategy could also be for example to perform two attacks on both cases
(mitigation before or after PoI selection) and combine the results. It is however
necessary to apply the mitigation process on the whole patterns (and not only
selected PoI) as relevant information can be also extracted from non identified
PoI and neighboring points.

Finally, the overall attack complexity and remaining necessary exhaust after
classes partitioning will depend on the used attack strategy. In this work, effort
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is put at showing the benefit of anomalies correction on the resulting leakage
and exploitability rather than complete attack scheme. Furthermore, based on
the successfully recovered part of the scalar, the effort for complete recovery will
also depends on the exhaust strategy (see [23,18]). That is why only the BRR is
considered as an indicator of the overall attack success. This allows to assess the
relevance of proposed methods and is easily comparable between approaches.

Still, at this stage, one may wonder whether the mitigation preserves or
restores the leakage, or simply limits the effect of outliers on the clustering
process, thus allowing a more accurate estimation of centroids. This point is
addressed in the next paragraphs.

7.4 Leakage recovery discussion

In order to obtain evidence on the ability of CycleGAN and RAE to restore (or
preserve) the leakage when correcting an anomaly, the BRR values considering
only the modified points by the networks have been extracted. This is depicted
on 13. Using CycleGAN, only a few (≤ 10%) of the points are corrected, while
for RAE most of the points are modified, even if the changes are small. As can
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Fig. 13: BRR obtained for points of Cswap Arith whose values have been changed
by the RAE or CycleGAN, on the two considered datasets.

be seen for Cswap Arith, in the leaky part of the patterns (time samples 1500 to
6000), many (between 55% and 80%) of the corrected time samples are classified
in the correct cluster by the k -means after applying the RAE. The same can be
observed with the CycleGAN, although the percentage of correctly classified bits
is lower (between 55% and 70%). There are two reasons that could explain these
results. Firstly, it is surprising but possible that both RAE and CycleGAN are
able to recover some of the leakage thanks to the multidimensional treatment of
the patterns. Secondly, the reduction of outliers and extremes limits their impact
on the values of the centroids, allowing a better classification of all points.

The values of the two centroids before and after mitigation were therefore
checked. Fig. 14 shows the absolute differences between the centroids provided by
the k -means applied to the raw patterns and after mitigation of the outliers with
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without any mitigation of outliers and after application of the RAE or the Cy-
cleGAN, on the Cswap Arith dataset.

the RAE and the CycleGAN. Results are given only for Cswap Arith dataset,
since the results for Cswap Pointer are similar. From the analysis of Fig. 8, it
appears that the time samples where the BRR has significantly increased (time
samples indexes 1500 to 6000) due to the reduction of outliers and extremes
coincide with the time samples where the centroids have been significantly shifted
(corrected) by the RAE or CycleGAN. Thus, the BRR improvements appear to
be at least partially, perhaps entirely, due to centroid correction, i.e., limiting
the impact of outliers on centroid estimates. If the gains in BRR were entirely
due to the correction of centroids, this would suggest that there is no recovery
of leakage.

7.5 Denoising and information recovery

Still, one would wonder what is the impact of the proposed mitigation processes
on the patterns noise levels and underlying information. It is crucial to know
if the proposed framework globally reduces the leakage information or not. To
this aim, the global Signal-to-noise ratio (SNR) [22] has been computed before
and after application of the considered methods. Results are showed in Table
2. An improvement over the measured SNR can be observed through the mit-
igation process. Indeed, the proposed methods allows to increase the SNR on
Cswap Pointer by a factor of 1.7 using the CycleGAN, and by a factor of 2.3 on
Cswap Arith using the RAE. This supports that the anomalies mitigation has a
denoising effect on the treated patterns.

Finally, to decide on whether information was recovered or not, the mutual
information (MI) between the correct scalar labels and the complete patterns was
computed using MINE, a linearly scalable neural mutual information estimator
[2,11] for high dimensionality estimation. Before the anomalies correction, the
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Dataset
Method Raw patterns After RAE After GAN

Cswap Pointer 0.030 0.037 0.052
Cswap Arith 0.009 0.021 0.020

Table 2: Signal to noise ratio. Best results are highlighted in bold.

information contained in Cswap Arith (resp. Pointer) was estimated to be close
to 0.923 bits (resp. 0.933 bits). After correction with the RAE and CycleGAN,
the information contained in Cswap Arith is now estimated to be 0.943 bits and
0.949 bits, respectively. For Pointer, it is about 0.922 bits and 0.936 bits. The MI
values between the complete patterns and the secret bits were thus very little
changed by the anomalies reduction process. This supports the claim that no
information has been recovered, but that the better estimation of the centroids
allows more information (that was already present in the raw patterns) to be
correctly exploited.

However, MINE was also used to estimate the MI between labels and sub-
parts of the patterns. The sub-parts of the patterns consisted in 100 bins, thus
blocks of 10 and 80 consecutive time points for Cswap Pointer and Cswap Arith,
respectively. Fig. 15 shows the difference in local MI before and after application
of RAE or CycleGAN. Increases (or decreases) in MI are depicted in green (or
red). Several increases in local MI of up to 0.3 bits for Arith and up to 0.2 bits
for Cswap Pointer can be observed when applying the RAE. This corresponds
to increases of about 20% of the local MI. The absolute MI gains are lower when
the CycleGAN is used. Given that no global increase in MI was induced by the
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Fig. 15: Differences between local MI obtained after and before application of
the RAE and CycleGAN to Pointer and Arith datasets.

application of either RAE or CycleGAN, and that significant increases in local
MI were observed, it is suggested through this observation that both RAE and
CycleGAN transpose some of the information contained in outlier-free parts of
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the patterns into altered subparts during the anomalies correction process, and
that this transposition brings back some time points with too many outliers or
extremes values into the exploitable domain for the attacks. This helps the k -
means to provide better estimates of centroids and thus slight increases of the
BRR obtained through the clustering process.

8 Conclusion

The presence of outliers and extremes values in side-channel datasets can seri-
ously reduce the efficiency of attacks, especially horizontal attacks, as well as
leakage assessment methods. Classical methods are often used to mitigate the
impact of outliers in an unsupervised way, although they are insufficient in high
noise contexts.

In this paper, the potential of deep learning based (and thus multidimen-
sional) methods have been investigated to mitigate the effects of anomalous
values. To this aim, two candidates has showed to be efficient architectures for
unsupervised anomalies mitigation. The first relevant candidate is a robust au-
toencoder (RAE) that can be applied in a fully unsupervised manner. The only
a prior required is the percentage of abnormal values, which can be easily esti-
mated. The second candidate is a modified generative model (CycleGAN), which
can also be applied in a fully unsupervised way, as its multiplexers only requires
the positioning of anomalies values. These methods have been applied to two
noisy public datasets considered for horizontal attacks. It has been found that
some time samples that were not exploitable for attacks before mitigation be-
came exploitable after application of RAE and CycleGAN, probably caused by a
transposition of leakage from outlier-free parts of patterns to corrected parts of
patterns. Furthermore, their application showed improvement over the Signal-
to-noise ratio and no degradation of the underlying leakage information, quite
the opposite. While it is possible that the process of applying the two methods
subsequently could be beneficial in some cases, on the considered datasets, the
mitigation using either the RAE or CycleGAN impact the same leakage areas
and thus would not be seen as an added value if combined. Furthermore, If done,
it would result in overly complexity for choosing appropriate architecture and
parameters tuning of both methods for the application in the context of hori-
zontal attack. Furthermore, some side-effect could arise from application of the
two methods together. Instead, some benefit could be seen if the two methods
would be applied separately on the same data and their results used for further
analysis.

Finally, It should also be noted that no special effort has been made to
optimize the network architectures used or to tune their parameters. Therefore,
there is still room for improvement.

Finally, one should note that although the application of these techniques led
to an increase in the exploitability of the leakage for the datasets studied, the
result could vary and dependent on the used datasets, the considered outliers or
noise model as well as their associated quantities. Indeed, it would be relevant
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for future work to consider alternative anomalies models than the ones used in
this work.
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A Robust autoencoder architecture

The complete optimization procedure for the RAE, based on [14] work, is de-
scribed in Algorithm 1.

Algorithm 1 Robust autoencoder optimization procedure
Require: X, τ, ϵ
Ensure: X = L+ S

L← 0
S ← 0
X∗ ← X
repeat

L← X − S
θ, ϕ = backprop(L,Fθ, Eϕ) ▷ optimize left term of Eq. 2 using gradient descent
L← Fθ(Eϕ(L))
S ← X − L
S ← prox(S, τ) ▷ update S by minimizing τ ||S||1 using Eq. 3
ϵ1 ← ||X−L−S||2

||X||2

ϵ2 ← ||X∗−L−S||2
||X||2

X∗ ← L+ S
until ϵ1 ≤ ϵ or ϵ2 ≤ ϵ
return L, S

Parameter ϵ corresponds to the stopping criterion for the optimization. The
value of τ was chosen such that it reflects the amount of observed anomalies (see
[14] for details). For the considered datasets, this parameter was set to τ = 0.04
for Cswap Pointer and τ = 0.05 for Cswap Arith respectively.

The network architecture was identical for the two datasets. The encoder
network was built using four fully connected layers such that each layer size (the
number of neurons) is the half of the previous one. The opposite was done for
the decoder network. Each layer uses the ReLU activation, except the decoder
last layer wich uses a hyperbolic tangent activation. The Adam optimizer was
used with learning rate α = 10−4. The model forward/backward propagation
is performed for 10 epochs at each optimization step using a batch size of 64
samples. Overall, no extensive architecture search nor parameter tuning has been
performed, as the described configuration already exhibited sufficient efficiency.
Indeed, a simple architecture allowed to produce satisfactory results. It is thus
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important to keep in mind that the aforedescribed architecture and tuning should
not be treated as optimal for the given task.

B CycleGAN with multiplexers architecture

The following network structures and parameters tuning has been chosen in the
application of the proposed framework on the two considered datasets. Here-
after, one dimensional convolution of a filters, b kernel size and c stride is de-
noted as C(a, b, c). Similarly, the one dimensional convolution transpose is noted
C ′(a, b, c). Bath normalization layers is noted as B and non linear activation as

d
A with d the activation function.

Firstly, the GANs generator use the LSGAN architecture [16], to prevent
vanishing gradient that could occurs during training. GA, GB are built from
convolutional autoencoders, composed of three downsampling blocks for the en-
coders

C(64, 7, 1) → B →
ReLU
A → C(128, 3, 2) → B →

ReLU
A → C(256, 3, 2) → B →

ReLU
A

and the three upsampling ones for the decoders. ReLU activation are used on
all layers, except for last layer of the decoder where tanh is used instead.

C ′(256, 3, 2) → B →
ReLU
A → C ′(128, 3, 2) → B →

ReLU
A → C ′(64, 7, 1) → B →

tanh
A

GANs dicriminators DA, DB are pixel discriminators [13], where each point is
classified as fake or real instead of the whole pattern. They are built from three
convolutional blocks:

C(64, 1, 1) →
ReLU
A → C(128, 1, 1) →

ReLU
A → C(1, 1, 1)

The discriminator loss is computed using the mean squared error between the
output of last convolutional block and ground truth, which corresponds to the
vector 1h if the input is real or 0h if it has been generated, where h match the
size of the discriminators output. The architecture is trained for 10 epochs at
each optimization step, with a learning rate α = 10−5 and a batch size of 16
samples.

C Details on implementation

The experimentations have been performed using Python 3.9. Implementation
of the neural networks models has been done using the Pytorch library. For the
proposed multiplexer CycleGAN, the implementation of the GAN networks is
highly inspired from [27]. Based on this ressource, implementation of the de-
scribed multiplexer CycleGAN should be more straightforward.

For both methods, the complete optimization procedure is performed under
30 minutes using a Nvidia RTX 3080 GPU and Intel i9-10900k CPU.
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Data scaling is applied globally (not featurewise) on the input raw matrices
so that points lie in the range (−1, 1) before training through the networks. This
is computed as follow:

X ′ = 2 · X −min(X)

max(X)−min(X)
− 1 (10)

This is mandatory since tanh activations are used for networks output (RAE
and CycleGAN generators).
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