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Abstract. Both masking and shuffling are very common software coun-
termeasures against side-channel attacks. However, exploring possible
combinations of the two countermeasures to increase and fine-tune side-
channel resilience is less investigated. With this work, we aim to bridge
that gap by both concretising the security guarantees of several mask-
ing and shuffling combinations presented in earlier work and addition-
ally investigating their randomness cost. We subsequently implement
these approaches to also analyse their performance. In this context, we
present five different protected implementations of the new standard for
lightweight cryptography, Ascon, on a 32-bit RISC-V architecture: A
3rd-order masked, unshuffled implementation and three combined 3rd-
order masked and shuffled implementations. Additionally, we present a
levelled implementation where only the particularly vulnerable keyed ini-
tialisation and finalisation of the permutation are masked and shuffled,
while the rest is only shuffled. To further improve the security and per-
formance of our implementations we make use of the Probe Isolating
Non-Interference (PINI) masked AND gadget, coupled with techniques
like bit-slicing and bit-interleaving. Utilising benchmarking and an MI-
shortcut security analysis, we pinpoint the best masking-shuffling com-
binations that maximize security at reasonable overheads.

Keywords: Side-Channel Countermeasures · Cryptographic Implemen-
tations · RISC-V.

1 Introduction

Side-Channel attacks such as Differential Power Analysis [22] pose one of the
most significant threats to cryptographic implementations nowadays. How to
prevent these kinds of attacks has thus become a major focus of research. Design-
ers of cryptographic primitives have begun to consider side-channel resistance
as one of the design concerns when devising new cryptographic algorithms. For
example, the new standard for lightweight cryptography, Ascon [14], already
incorporates features such as bitslicing [6] to prevent cache-timing attacks [4]
and specifically tailored aspects of the encryption process to allow for easy in-
tegration of side-channel countermeasures such as masking [10] or shuffling [20].
Both of these techniques are able to provide standalone protection and can, in
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theory, be extended for an arbitrary amount of protection, given sufficient noise
to amplify and sufficient independent operations to shuffle.

Related work. The Ascon algorithm suite and the Ascon-128 variant in partic-
ular have undergone significant scrutiny and found to be cryptographically sound
[15]. At the same time, it has been demonstrated that side-channel attacks on
Ascon are feasible and can lead to partial or even full key recovery. Correla-
tion power analysis (CPA) has been used to recover the complete encryption
key from an unprotected Ascon implementation using 8, 000 traces [24]. When
augmenting the CPA with deep learning techniques, the number of traces can be
reduced further to 1, 000 and partial keys can be recovered even from 1st-order
secure implementations [33], highlighting the need for strong higher-order secure
implementations.

Several implementations of Ascon that make use of these side-channel coun-
termeasures have been presented. A levelled 1st-order masked software imple-
mentation was presented in [1], yet it might not suffice for a thorough defense
against SCAs. Two 2nd-order masked implementations of Ascon have been pro-
posed in [19] and [27] for software and hardware, respectively. To the best of our
knowledge, no implementations of Ascon with higher masking orders have been
explored.

To achieve strong hardening against side-channel attacks, it is rarely the best
choice to spend all effort on a single countermeasure. As suggested by Mangard
et al. [23], it is more prudent to combine several cheap countermeasures and such
combinations have been analysed in the past. In [29], Prouff et al. presented a
probability-theoretic argument for the effectiveness of combining masking and
shuffling. This was subsequently expanded by Azouaoui et al. in [2], where several
different combinations of these countermeasures were discussed and evaluated.

Contribution. In this work, we expand and concretise the work of Azouaoui
et al. [2]. We apply two of the combinations (Shuffle Tuples and Shuffle Shares)
from that paper to a specific platform and algorithm and present an additional
new combination that leverages bit-interleaving for a further increased security
benefit. Additionally, we give a new way to shuffle a particular masked AND
gadget, PINI-AND [9] and finally quantify the security increases the presented
techniques provide according to the Mutual Information metric [30] by adapting
the shortcut formulas put forward in [2].

Furthermore, we apply the discussed techniques to Ascon on a RISC-V 32-
bit architecture, resulting in five side-channel protected implementations: One
3rd-order masked implementation, three versions combining 3rd-order masking
with shuffling approaches and one levelled version, which exploits the fact that
only the initialisation and finalisation of the Ascon scheme need to be heavily
secured against side-channel attacks, whereas the associated data and message
processing parts only need much lighter protection [3].
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2 Background

2.1 Ascon

In 2023, the U.S. National Institute of Standards and Technology (NIST) con-
cluded the lightweight cryptography (LWC) standardisation process by selecting
the Ascon [14] family of algorithms as the winner [31]. For this work, we are
concerned with the main recommendation of the Ascon suite, Ascon-128.

The encryption algorithm itself is permutation-based using a 320-bit state
made up of 5 64-bit registers. An execution of the permutation consists of a
certain number of rounds. During every round r, three steps are performed:

1. A one byte round constant cr is added to the third state register.
2. A five-bit substitution layer (S-Box) is applied to the state. This S-Box

iteratively processes a vertical slice of the five state registers, changing the
values according to a look-up table.

3. A linear diffusion layer is applied, rotating every state register twice by
different amounts and then XORing the two, as well as the unrotated state
register, back together.

A visualisation of these operations can be found in Appendix B. The lookup
table of the S-Box poses a significant hurdle in multiple regards. For one, lookup
tables are often prone to side-channel attacks such as cache-timing attacks [4].
More significantly, since we want to mask the permutation, we need to have a
way of performing the lookup without unmasking the current value. While it is
technically possible to implement a masked lookup table, this quickly becomes
infeasible with higher masking orders as the memory requirements to store these
tables quickly grow larger than most embedded devices have at their disposal
[12].

To circumvent these issues, bitslicing [6] can be used, which is often less
computationally demanding and requires less memory. In fact, the design of
the Ascon S-Box was created with bitslicing explicitly in mind. In the Ascon
specification, the authors already provide a sequence of XOR, NOT, and AND
operations to perform on the state that yields the same output as performing
the “normal” lookup-table-based S-Box.

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

t0 = x0; t1 = x1; t2 = x2; t3 = x3; t4 = x4;

t0 = ¬t0; t1 = ¬t1; t2 = ¬t2; t3 = ¬t3; t4 = ¬t4;
t0 = t0 ∧ x1; t1 = t1 ∧ x2; t2 = t2 ∧ x3; t3 = t3 ∧ x4; t4 = t4 ∧ x0;

x0 = x0 ⊕ t1; x1 = x1 ⊕ t2; x2 = x2 ⊕ t3; x3 = x3 ⊕ t4; x4 = x4 ⊕ t0;

x1 = x1 ⊕ x0; x0 = x0 ⊕ x4; x3 = x3 ⊕ x2; x2 = ¬x2;

2.2 Bit Interleaving

Considering that we are trying to implement an encryption based on a 64-bit
state on a 32-bit system, we need to split each state register into two 32-bit regis-
ters without hampering performance too heavily. The naïve separation into two
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registers by simply splitting the register in the middle causes difficulties in the
linear layer: With this separation, rotations of full state registers become cum-
bersome: A single rotation of a state register would require 7 instructions and
three temporary registers in this scenario. Instead, we use a solution proposed
by Bertoni et al. [5] called “Bit Interleaving”: Rather than splitting the register
in half, we separate the bits into even and uneven bits so that the first 32-bit reg-
ister contains all the bits at even positions b0, b2, . . . , b62 of the original register
and the second 32-bit register contains all the bits at odd positions b1, b3, . . . , b63.
This configuration does not affect any operations except rotations. For a register
x interleaved into xe and xo containing the even and odd bits of x, respectively,
rotations by an even amount 2r can now be implemented by simply rotating
both registers by r. Rotations by an uneven amount 2r + 1 are implemented
by rotating xe by r, rotating xo by r + 1 and then swapping the two registers.
A visualisation of bit interleaving and these rotations is given in Appendix B.
Although the RV32IM ISA we have chosen does not provide any rotation in-
structions1, utilising this technique allows us to implement rotation with four
shifts, two XORs, and one temporary register, meaning one less operation and
two fewer temporary registers than the naïve version.

2.3 Masking

One of the most common countermeasures against SCAs is masking, which tries
to prevent the leakage of intermediate values through the power consumption or
electromagnetic emissions by “masking” relevant intermediate values with ran-
dom values. More precisely, to mask a value x, it is split into d + 1 “shares”
x0, . . . , xd using an involutory operation ◦ so that x0, . . . , xd−1 contain random
values r0, . . . , rd−1 and xd = x ◦ r0 ◦ · · · ◦ rd−1. One can then only obtain the
original value by combining all d shares: x0 ◦ · · · ◦ xd = x. This implies that an
adversary trying to obtain x must now obtain all shares of the value to be able
to unmask it. Consequently, there is no set of d shares an adversary can obtain
that reveals any information about the original value. This is commonly referred
to as d-th order security.

Commonly, ◦ denotes the XOR operation. Performing linear operations on
masked values is straightforward. Difficulties arise when one tries to also perform
non-linear operations such as AND on masked values. Several approaches have
been presented to solve this, usually by incorporating additional randomness. A
frequently used approach is that of Ishai, Sahai, and Wagner [21]. While this
approach originally only promised d/2-th order security, adaptations of it have
been presented that promise d-th order security, albeit with special requirements
for the individual shares that sometimes require mask refreshing when composing
operations [28]. However, these mask refreshing procedures have also been shown
to not be unconditionally d-th order secure [13].

1 At the time of writing, no ratified extension to RISC-V implementing rotations exists
yet.
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Instead, we use a relatively novel scheme proposed by Cassiers and Standaert
[9] for performing masked AND operations. In contrast to the ISW scheme, this
approach has been proven to be d-th order secure as is. Moreover, it is arbitrarily
composable, both with itself and any other masked operation, as long as the
other operation also fulfils the notion of Probe Isolating Non-Interference (PINI)
introduced in the paper. This includes any linear operation masked with the same
number of shares as the PINI-AND gadget. The computation and randomness
cost of a PINI-AND operation is the same as with the ISW scheme (both O(d2)).
The original algorithm also requires O(d2) amounts of memory. However, in the
paper the authors hint at an adaptation of the gadget that gives the same security
guarantees while only requiring linear memory. Our implementation makes use
of this more efficient gadget. We give an explicit description of this adaptation
in Section 3.4.

2.4 Shuffling

The idea of the shuffling countermeasure is to randomise the order of execution
of a set of operations. Varying the point in execution at which a certain value is
calculated between different executions of the encryption increases the difficulty
for an adversary to correlate values from a given power trace or similar side-
channel measurement [20].

Formally, shuffling takes an input vector y containing all inputs to process
with a given operation op(·). Additionally, a permutation θ ∈ Θ|y| is supplied
where Θ|y| is the set of all permutations of the sequence [0, |y| − 1]. During the
execution of the cipher, the program iterates over θ so that at iteration i, yθi is
accessed, and zθi = op(yθi) computed.

Two things need to be observed in particular when shuffling: First, the set
of objects to shuffle must be sufficiently similar that an adversary cannot easily
tell them apart in a power analysis. In practice, this usually means that all
operations have to be the same and inputs to the operations need to be either
all fixed or all random. For example, AND and XOR operations can already
have distinct enough “leakage signatures” that an adversary can be able to tell
them apart in a power trace. Secondly, one must be aware that if there is enough
leakage of the permutation used to shuffle, an adversary can simply obtain this
permutation and the benefit of shuffling vanishes.

2.5 Mutual Information

The Mutual Information (MI) framework [30] is a system of information-theoretic
metrics created to measure the amount of information an implementation leaks
while performing encryptions. Based on information theory, it employs metrics
such as Shannon’s Conditional Entropy to correlate leakages measured by an
adversary to specific keys used in an encryption. It can thus give an estimation
of the information leakage of a certain value (given sufficiently noisy conditions)
and further be used to estimate the probability of success of an adversary recov-
ering that value given a certain number of leakage measurements [16,11].
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Concretely, let us assume we have a vector of secret keys K and a corre-
sponding matrix of leakages L where every element of the matrix is a vector of
leakages measured while using key ki. We further assume that keys are uniformly
randomly distributed, in which case we can calculate the conditional probability
of a key given a leakage. Using this, we can estimate the mutual information
MI(K;L) via the key entropy by sampling from this key distribution [7]. Gen-
erally, MI(K;L) is bound from above by the key entropy and is zero if leakages
convey no information at all about the key used. Realistically, neither of these
cases is likely. Usually, it is a value between 0 and 1 and should ideally be as small
as possible. In that case, one can estimate the number of traces N needed to
perform a statistical attack like correlation power analysis (CPA) very roughly
using the mutual information: N ≥ c

MI(K;L) . Here, c is a constant depending
on the key entropy and the desired success rate of the attack. We will use this
formula to estimate the security improvements of our devised schemes in Section
5.

3 Combining Masking and Shuffling for Bit-Interleaved
Schemes

As mentioned, the schemes presented in [2] serve as the baseline for this work.
In this section, we discuss the adaptations of these schemes we devised to fit the
specific structure of Ascon and the design choices made for this implementation.
Although our focus here was Ascon, we want to highlight that the approaches
presented can also be applied to other algorithms or platforms where the state
register size of the algorithm is a multiple of two of the platform register size.
For simplicity, the approaches here are shown with an interleaving factor of two.
They could, however, be trivially adapted to other interleaving factors, e.g. using
an interleaving factor of four if one were to implement Ascon on a 16-bit system.

Before we can discuss combinations of masking and shuffling, we need to
establish how we mask values. A general algorithm for this masking and inter-
leaving approach, independent of Ascon, is given in Algorithm 1.

To present our shuffling countermeasures in the following Sections (3.1. 3.2,
3.3 and 3.4), we use the following notation: Let A = [a0, . . . , an−1] and B =
[b0, . . . , bn−1] be two lists each consisting of n d-th order masked, interleaved
values as previously described, so e.g. ai = [[a0ie , . . . , a

d
ie
], [a0io , . . . , a

d
io
]]. Further-

more, we define C = [c0, . . . , cn−1], where ci = op(ai, bi) is the result of com-
bining ai and bi with a binary linear operation op(·) adapted to work on these
masked, interleaved shares. A visualisation of all three approaches is given in
Appendix B.

3.1 Shuffling Tuples

The first and simplest approach to combining masking and shuffling countermea-
sures, as presented in [2], is to mask first and then shuffle in the same way as in
an unmasked implementation. More precisely: given a permutation θ of [0, n−1],
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Algorithm 1 Masking and interleaving values
Inputs: [a0, . . . , an−1], Masking order d
for i = 0 to n do

aie , aio ← interleave(ai)
for j = 0 to d− 1 do

aj
ie

$← F232

aj
io

$← F232

end for
ad
ie ← aie ⊕ a0

ie ⊕ · · · ⊕ ad−1
ie

ad
io ← aio ⊕ a0

io ⊕ · · · ⊕ ad−1
io

end for
Outputs:

[[[a0
0e , . . . , a

d
0e ], [a

0
0o , . . . , a

d
0o ]], . . . , [[a

0
ne

, . . . , ad
ne

], [a0
no

, . . . , ad
no

]]]

we can shuffle the masked operations as we would if they were unmasked by per-
forming them in the order op(aθ0 , bθ0), . . . , op(aθn−1

, bθn−1
). A precise algorithm

for this procedure is given in Algorithm 2 and our interleaved implementation
utilises it as is.

Algorithm 2 “Shuffling Tuples” masking and shuffling combination
Inputs: a = [a0, . . . , an−1], b = [b0, . . . , bn−1], op(·), θ
for i = 0 to n− 1 do

k ← θi ▷ Index to calculate next
ck ← op(ak, bk) ▷ Perform the masked operation

end for
Outputs: c = [c0, . . . , cn−1] so that ∀i : op(ai, bi) = ci

3.2 Shuffling Shares

For the following two shuffling approaches (Sections 3.2, 3.3), the methods for
shuffling linear and non-linear operations differ. Here, we will only discuss ap-
proaches for shuffling masked linear operations and extend our approach to non-
linear operations in Section 3.4.

In this second approach, we do not shuffle the entire masked operations with
each other but instead shuffle at the share-level. Note that there is no benefit to
shuffling the order of processing of shares of the same value. This is because to
successfully recover an unmasked value, an adversary needs to obtain all shares
of that value, irrespective of the order in which they obtain them. Instead, we
shuffle over the shares of different values in the following way: For two linear
operations a0 ⊕ b0 and a1 ⊕ b1 we shuffle first the processing of all akie ⊕ bkie ,
where k is the current share index as dictated by the permutation used. In a
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second step, we process all akio ⊕ bkio . The sequences we shuffle over now are the
sets of i-th shares of first the even, then the odd half of every interleaved register.
Overall, this means we shuffle d+ 1 sets of n operations. See Algorithm 3 for a
precise description of this procedure.

Algorithm 3 “Shuffling Shares” masking and shuffling combination
Inputs: a = [a0, . . . , an−1], b = [b0, . . . , bn−1], op(·), θ
for i ∈ {e, o} do ▷ First process the shares of the even register, then the odd

for j = 0 to d do ▷ Iterate over the shares
for l = 0 to n− 1 do

k ← θl ▷ Index to calculate next
cjki
← op(aj

ki
, bjki

) ▷ Perform the masked operation
end for

end for
end for
Outputs: c = [c0, . . . , cn−1] so that ∀i : op(ai, bi) = ci

3.3 Shuffling Everything “Light”

The third described countermeasure combination in [2] is called “Shuffling Every-
thing”, where the authors suggest combining all shares of all registers used into
one permutation. Albeit technically possible, this approach grows significantly
more complex when incorporating non-linear operations. Both due to suspected
diminishing returns with respect to security and due to the scope of this work
we elected not to investigate this, but instead to find more straightforward ways
of shuffling more things with each other.

For shuffling shares, we only shuffle between registers at exactly the same
position. This means that we differentiate between the “even” and “odd” registers
of which one state register is comprised. However, this is not strictly necessary:
in a linear operation (that is not a shift or rotation), the even and odd registers
making up one state register never interact with each other. Thus, we can shuffle
the i-th shares of an even and odd register with each other as well. We refer
to this as “Shuffling Everything Light” (Shuffle EL). The permutation θ thus
consists not only of the indices [0, n − 1] of the complete operations to shuffle,
but also includes for every index an even and an odd variant. Consequently, the
permutation is of the following form.

θ = {0e, 0o, 1e, 1o, . . . , n− 1e, n− 1o} , |θ| = 2n

This doubles the number of operations we can shuffle with one permutation. A
more precise description is given in Algorithm 4.
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Algorithm 4 “Shuffling Everything Light” masking and shuffling combination
Inputs: a = [a0, . . . , an−1], b = [b0, . . . , bn−1], op(·), θ = {0e, 0o, . . . , n− 1e, n− 1o}
for j = 0 to d do ▷ Iterate over the shares

for l = 0 to 2n− 1 do ▷ We now combine the even and odd part
k ← θl ▷ Index to calculate next
cjk ← op(aj

k, b
j
k) ▷ Perform the masked operation

end for
end for
Outputs: c = [c0, . . . , cn−1] so that ∀i : op(ai, bi) = ci

3.4 Shuffling PINI-AND Operations

When shuffling linear operations, there is a clear separation of when each share
is processed. In a non-linear operation, this separation becomes much less clear,
requiring us to devise specially crafted shuffling schemes, different from those for
linear operations.

An algorithmic description of the gadget we use is given in Algorithm 5. It
differs slightly from the original algorithm description given in [9], as we have
implemented the hinted-at adaptated version which requires only linear memory
by directly calculating every zij and zji from each rij , removing the necessity to
store each rij .

Algorithm 5 PINI AND gadget with linear memory requirements
Inputs: a = [a0, . . . , ad], b = [b0, . . . , bd]
for i = 0 to d do

ci ← aibi
end for
for i = 0 to d do

for j = i+ 1 to d do
rij

$← F232 ; rji ← rij
zij = (ai + 1) · rij + ai · (bj + rij)
zji = (aj + 1) · rji + aj · (bi + rji)
ci ← ci + zij
cj ← cj + zji

end for
end for
Outputs: c = [c0, . . . , cd] so that c = a ∧ b

To determine a shuffling approach for this gadget, we need to consider when
each share is processed and which computed values have a dependence relation.
When calculating the initial ci = aibi in Algorithm 5 we can still clearly separate
the share accesses but during the calculation of the values zij , different shares are
accessed, muddying the distinction. This makes shuffling across shares infeasible
for this gadget. On the other hand, note that the computation of every zij is
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independent from all other intermediate values computed in the gadget, meaning
the order in which they are computed does not matter. This yields a first ap-
proach for shuffling. However, shuffling the computation of intermediate values
inside one PINI gadget does not enhance security, similarly to how shuffling the
processing of shares inside one linear gadget does not enhance security.

Consequently, we settled on shuffling the computation of aibi and zij for
different a and b, thus shuffling across gadgets, instead of inside a gadget. This
means we, for example, shuffle the computation of all a0b0 for a given set of
PINI AND operations. The same applies for the computation of all z01, z10,
and so forth. The logic of how we shuffle across gadgets (i.e. whether we shuffle
over each interleaved register separately or whether we combine these) is exactly
the same as with linear gadgets, allowing for a seamless combination of linear
and non-linear gadgets in our countermeasure combinations. For completeness,
the algorithms for shuffling shares and shuffling everything light have also been
written out in Algorithms 6 and 7, respectively. In these algorithms, x +← y is a
shorthand for x← x+ y.

Algorithm 6 “Shuffling Shares” masking and shuffling combination for PINI-
AND

Inputs: a = [a0, . . . , an−1], b = [b0, . . . , bn−1],
Set Θn of permutations of length n to sample from

for l ∈ {e, o} do ▷ First process the shares of the even register, then the odd
for k = 0 to d do ▷ Iterate over the shares

θ
$← Θn ▷ Use a random permutation

Shuffle([ak
0l ∧ bk0l , . . . , a

k
n−1l ∧ bkn−1l ], θ) ▷ Shuffle the calculation of aibi

end for
for i = 0 to d do

for j = i+ 1 to d do
θ

$← Θn

Shuffle([ci0l
+← zij0l , . . . , ci0l

+← zij0l ], θ) ▷ Shuffle the calculation of zij

θ
$← Θn

Shuffle([cj0l
+← zji0l , . . . , cj0l

+← zji0l ], θ) ▷ Shuffle the calculation of zji
end for

end for
end for
Outputs: c = [c0, . . . , cn−1] so that ∀i : op(ai, bi) = ci

3.5 Randomness Cost

Generally, to mask a set of n r-bit values in our configuration with an interleaving
factor of l, we need to generate n ·r ·d bits of randomness. Note that the required
randomness does not depend on the interleaving factor, as the overall size of the
values to mask does not change. In the case of Ascon, for example, this results
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Algorithm 7 “Shuffling Everything Light” masking and shuffling combination
for PINI-AND

Inputs: a = [a0, . . . , an−1], b = [b0, . . . , bn−1],
Set Θ2n of permutations of length 2n to sample from

for k = 0 to d do ▷ Iterate over the shares
θ

$← Θ2n ▷ Use a random permutation
Shuffle([ak

0e ∧ bk0e , a
k
0o ∧ bk0o . . . , a

k
n−1e ∧ bkn−1e , a

k
n−1o ∧ bkn−1o ], θ)

end for
for i = 0 to d do

for j = i+ 1 to d do
θ

$← Θ2n

Shuffle([ci0e
+← zij0e , ci0o

+← zij0o , . . . , ci0e
+← zij0e , ci0o

+← zij0o ], θ)

θ
$← Θ2n

Shuffle([cj0e
+← zji0e , cj0o

+← zji0o , . . . , cj0e
+← zji0e , cj0o

+← zji0o ], θ)
end for

end for
Outputs: c = [c0, . . . , cn−1] so that ∀i : op(ai, bi) = ci

in a randomness requirement of 5 · 64 · d = 320d bits. The randomness cost of
shuffling stems from generating the shuffling permutation alone. Generally, a
permutation of length n can be generated with Θ(n log2 n) bits of randomness
[17]. For shuffling tuples, a single permutation of length n is needed to shuffle the
n operations. For shuffling shares, one permutation is needed per share index.
Thus, for d-th order security, Θ((d+1)n log2(n)) bits of randomness are required.
For shuffling everything light, the situation is the same as for shuffling shares,
with the only difference being the larger size of 2n for the permutation. Following,
the randomness required is Θ((d+ 1)2n(log2(n) + 1)) bits.

On top of this, we need to account for the extra randomness required by all
schemes for the computation of each PINI-AND gadget. Since every PINI-AND
computation on an r-bit device requires r (d+1)d

2 bits of randomness, computing
a set of n such operations requires an additional n · r (d+1)d

2 bits of randomness.
The randomness cost for shuffling PINI-AND operations with these schemes is
not directly bound by the security order, but by the number of independent
operations performed inside the non-linear gadget. Thus, in our case, shuffling
shares requires Θ(d2n log2(n)) bits of randomness and shuffling everything light
requires Θ(d22n(log2(n) + 1)) bits. Shuffling tuples does not require any extra
randomness to shuffle the PINI-AND operations.

For clarity, the randomness values of all schemes, both in the linear and
non-linear case, are also listed in Table 1. Refer to Appendix B for a graph
showing the randomness requirement versus the masking order d. In Section 5,
we will provide specific numbers for the randomness needed when applying these
schemes to a third-order masked and a levelled version of Ascon.
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Table 1: The randomness requirements of the different shuffling approaches, mea-
sured in bits. Values in the non-linear column do not include the randomness
required in the computation of the non-linear gadgets.

Linear Non-linear
Shuffle tuples n log2(n) n log2(n)

Shuffle shares (d+ 1)n log2(n) d2n log2(n)

Shuffle EL (d+ 1)2n(log2(n) + 1) d22n(log2(n) + 1)

4 Implementation

To benchmark the schemes proposed in a practical setting, we implemented five
protected variants of the Ascon-128 encryption scheme. One implementation
uses only 3rd-order masking for protection. Three implementations combine
3rd-order masking with Shuffle Tuples, Shuffle Shares and Shuffle EL respec-
tively. Finally, we also implemented a levelled version, where only the initial-
isation and finalisation are masked and shuffled (with 3rd-order masking and
Shuffle EL), while the rest of the cipher is shuffled (with Shuffle EL) but is
not masked. All five variants were implemented in RV32IM assembly code and
the source code can be found here: https://uva-hva.gitlab.host/l.mainka/
side-channel-secure-ascon.

4.1 Optimising the S-Box

The bitsliced S-Box presented in the Ascon specification (shown again in Sec-
tion 2.1) provides a good foundation for an initial implementation. There are,
however, means to optimise it in our case. Concretely, the second and third row
of the given bitsliced S-Box consist only of copy and NOT operations, respec-
tively and can be combined into a single operation. Going further, we can also
combine these two rows with the subsequent row of AND operations. While not
a meaningful optimisation in an unprotected implementation, in a masked and
shuffled implementation it saves a substantial amount of instructions because it
reduces the number of instruction sets to shuffle by one. This means one less
round of computing jump offsets and at least one less load and store for every
share. In addition, as a masked negation is performed simply by negating an
arbitrary share, integrating the negation into the AND should in theory only
cost a single instruction. In reality, a few more instructions are required, but
still many less than if we were performing the operations separately. The S-Box
we now compute then looks as follows.

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

t0 = ¬x0 ∧ x1; t1 = ¬x1 ∧ x2; t2 = ¬x2 ∧ x3; t3 = ¬x3 ∧ x4; t4 = ¬x4 ∧ x0;

x0 = x0 ⊕ t1; x1 = x1 ⊕ t2; x2 = x2 ⊕ t3; x3 = x3 ⊕ t4; x4 = x4 ⊕ t0;

x1 = x1 ⊕ x0; x0 = x0 ⊕ x4; x3 = x3 ⊕ x2; x2 = ¬x2;

The number of instructions we save with this implementation varies between
the different shuffling schemes. We report them in Table 2. The savings from

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon
https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon
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Table 2: The instruction count of the masked S-Box without (Standard) and
with (Optimised) combining the copy, NOT and AND per shuffling scheme.

Shuffling Tuples Shuffling Shares Shuffling EL
Standard 2384 6175 6130
Optimised 2304 5797 5756

this optimisation are so substantial in the latter two schemes because it reduces
the number of operation sets we shuffle by one. When using Shuffling Shares
and Shuffling EL, this saves us one whole iteration of computing jump offsets.
Moreover, as alluded to previously we need to load/store all values before/after
each computation, meaning this also reduces the number of times the entire state
is loaded into registers and written back into memory by one.

For a brief discussion of other optimisations avenues that we decided against,
refer to Appendix A.

4.2 Shuffling

Generating the permutation. For generating a (theoretically) unbiased ran-
dom permutation of a sequence s = [0, n− 1], the algorithm presented in [17] is
a common choice that we also utilised for this work. It generates the permuta-
tion in O(n) time and requires Θ(n log2 n) bits of randomness. While there are
caveats to using this algorithm, such as possible bias, they do not pose hazards
to the security of our implementation, since the bias induced by side-channel
leakage is typically higher.

Implementing Shuffling. In [32], Veyrat-Charvillon et al. give a taxonomy
of three possible paths for implementing shuffling. In the first, called “Double
Indexing”, an operand and a permutation vector are stored in memory. At every
shuffling step, the permutation vector is accessed and the retrieved value is used
as the index to access the operand vector. The retrieved operands are then
fed into the operation. For the second approach, the authors propose writing
out the code for each operation and giving it a label to store in an array in
memory at compile time. At runtime, the order of this array is randomised and
every entry is used successively to jump to the stored address and to perform the
operation at that address. Finally, while the previous two approaches determined
the next operation to execute at runtime, the third approach is to use the self-
programming capabilities some chips have to reorder the program memory after
compiling so that at runtime, the program can be executed without additional
control logic.

In our work, approach three was not considered, as the number of times the
flash memory of a chip can be rewritten is prohibitively low for use in practice.
Similarly, we decided against approach one due to the significant performance
overhead of creating operand vectors and then accessing memory twice for every
operation.
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The approach we chose is a modification of the second approach. Instead of
giving every operation a label and assembling the addresses of these labels in
an array at compile time, we place the operations sequentially in the program,
set one label before the beginning of the first operation, one label after the
last operation and determine the code size of the operations. At runtime, we
then access a permutation vector in memory and calculate an address offset by
multiplying the operation code size by the permutation index and adding the
resulting value to the initial label. After all operations of one shuffling set have
been performed, a final jump to the label after the last operation is done and the
next instruction can be executed. Our approach allows us to determine the next
operation to execute in only five instructions without requiring significant logic
at compile-time and saves us from randomising the address vectors at runtime.
Additionally, it ensures by design that all shuffled operations have exactly the
same length, preventing potential side-channel leakage due to different operation
sizes.

What to shuffle. Our general motivation was to maximize the amount of shuf-
fled components, meaning in particular that we try to shuffle the entire permu-
tation. The bitsliced version of the S-Box as described in the Ascon specification
has a natural structure of applying five operations at a time to the five state
registers. Consequently, we chose to shuffle blocks of five masked operations. For
the first and last XORs and the last NOT which do not comprise five operations,
we introduced additional dummy operations. Accounting for the combining of
the copy, NOT, and AND operations, this gives us five sets of operations across
which we can shuffle. 2

It is very important to note that shuffling significantly increases register
pressure. Since there is no guarantee anymore that operations are performed in
a particular order, a general rule is that results can not be written back to the
same register immediately, but have to be stored in a temporary location until all
operations of the current shuffling block have been performed. Take for example
the first shuffling block of the S-Box. If we calculate x0 = x0 ⊕ x4 and then
x4 = x4 ⊕ x3, everything is fine. Should we now shuffle with a permutation that
performs these operations in inverted order, x4 is updated before x0 is, leading
to incorrect results. Thus, we need to store the results of these operations in a
temporary location before storing them back once all five have been completed.
Naturally, these storing back operations can be (and are) shuffled, too.

In the linear layer, our use of bit interleaving posed a hurdle: Since the
two bit interleaved registers need to be swapped for an odd rotation but not
for an even rotation (cf. Section 2.2 or the visualisation in Appendix B), the

2 The authors of [2] note that adding dummy operations in a masking-shuffling com-
bination is rarely worth it from a security standpoint. We decided to add them
regardless for two reasons: 1) Since in a levelled implementation a significant por-
tion of the permutation will only be shuffled but not masked, the effect is more
pronounced, and 2) With the dummy operations all shuffling sets will be of the same
size, significantly simplifying the implementation.
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operations needed to rotate by an even or an odd amount differ. Considering that
we would like for all shuffled blocks to be of the same size to avoid distinguishing
characteristics in time and power that can undo the benefit of shuffling, we
introduced a dummy swap in the even rotation.

Due to the shape of the Ascon state, the linear layer also naturally lends
itself to shuffling blocks of five operations. The granularity of the blocks to
shuffle leaves more room for possibilities: For shuffling tuples, we considered
each transformation of one state register as one block, thus giving us only a
single set of operations to shuffle which each consists of two rotations and three
XORs. For shuffling shares, we did separate the aforementioned blocks, giving
us four sets of operations to shuffle: Two XORs and two rotations. As in the
S-Box, we first shuffled the computation of the first 32-bit registers of the state
registers and then performed the shuffled computation of the second. Shuffling
Everything Light introduced a further difficulty, as the technique relies on the
ability to process the two interleaved registers at the same time. Due to the two
interleaved registers switching places in case of an uneven rotation, we can only
have the rotation of both registers in the same shuffling set if the results are
written to an intermediate location first and only moved to the correct place
after all operations of the current shuffling set have been completed.

4.3 Randomness requirements

Section 3 already discussed the theoretical randomness requirements for the three
shuffling approaches. We will now use these formulas to provide explicit values
for the number of bits of randomness required for all five implemented variants of
Ascon-128. Since the randomness requirement of the PINI-AND operations does
not differ between shuffling schemes and only depends on the masking order,
we calculate this value once and add it to the requirements of every (masked)
scheme: Every round of the permutation contains five non-linear PINI-AND
operations on the state. Since we split the registers in two, this results in ten 32-
bit PINI AND operations. These operations require an additional 10·16(d+1)d =
160 · 4 · 3 = 1920 bits of randomness.

Shuffling Tuples The S-Box consists of three blocks of XORs, one block of
PINI-AND and one block of NOTs we need to shuffle. On top of these, we need
two blocks for shuffling the “storeback” operations mentioned in the previous
section. Additionally, we have one further block for the linear layer. All eight of
these blocks consist of five operations, meaning we have a rounded up random-
ness requirement of

8 · (5 log2(5)) ≈ 93 bits

for generating the shuffling permutations for this approach.

Shuffling Shares For shuffling shares, we still only shuffle blocks of five op-
erations. However, since we are now shuffling the processing of shares across
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operations (in the case of linear operations) and separate the two halves of each
state register into separate shuffling blocks, we now need eight shuffling blocks
to complete one set of five operations in the S-Box. As we have the same amount
of operations to perform as when shuffling tuples, this leaves us with 8 · 6 = 48
shuffling blocks in total for the linear operations of the S-Box. To shuffle the non-
linear PINI-AND operations we require a total of 14 shuffling blocks to compute
all intermediate values. Additionally, we need four more blocks to aggregate all
intermediate values and to move them into the correct location, Finally, we need
to double these numbers again to account for the separate processing of the in-
terleaved halves of each state register. In total, we thus have 84 shuffling blocks
in the S-Box. In the linear layer, each rotation and each subsequent XOR require
one shuffling block, adding a further 16 blocks. This yields a total of

(84 + 16)(5 log2(5)) ≈ 1161 bits

to generate all permutations for shuffling in this approach.

Shuffling Everything Light For shuffling everything light, we now shuffle
blocks of ten operations because we join the operations on each half of the state
register into one shuffling block. This means that we only have six operations
to shuffle for the S-Box. As we are masking with four shares, the total number
of shuffling blocks for the S-Box is thus 24. In the linear layer we merged the
rotations and following XOR into one operation, meaning we only have three
operations to shuffle, resulting in a total of 12 shuffling blocks, Overall, we thus
need

(24 + 12)(10 log2(10)) ≈ 1196 bits

of randomness in this scheme.

5 Analysis

5.1 Performance

Section 4.1 already provides information regarding the performance of the pro-
posed schemes in terms of instruction counts. This section will also present the
number of cycles our schemes need on a device since the correspondence be-
tween cycles and instructions is not always one-to-one. To obtain these numbers
we used a QEMU simulation of a SiFive HiFive 1 Rev B 3, a board built around
a SiFive FE310-G002 chip which provides the RV32IMAC ISA. Cycle measure-
ments were performed through the RISC-V provided RDCYCLE control-and-status
register (CSR).

In Figure 1 the number of cycles needed for one round of the permutation
are shown per scheme. For comparison, we include an unmasked, but shuffled
variant. In Table 3 we present the number of cycles needed to process a single
block of plaintext, as well as the resulting throughput in bits per cycle.
3 https://www.sifive.com/boards/hifive1-rev-b

https://www.sifive.com/boards/hifive1-rev-b
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Table 3: Number of clock cycles to process a single byte of plaintext and related
throughput. All schemes are 3rd-order PINI masked.

Unshuffled ShuffleTuples ShuffleShares ShuffleEL Levelled
No. Clock Cycles 16,395 20,842 50,326 51,481 7,301
Throughput (bits/cycle) 0.004 0.003 0.0013 0.0012 0.009

Fig. 1: The number of cycles needed to compute one round of the permutation per
scheme, separated by the different steps. With the exception of the “Unmasked,
Shuffled” variant, all others variants are 3rd-order PINI masked.
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5.2 Security

To quantify what increases in security the implemented masking-shuffling com-
binations have brought, we performed an analysis using the Mutual Information
framework and adapt the shortcut formulas from [2] to our customized shuffling
variants.

When analysing a d-th order masked gadget, a potential attacker needs to
obtain information about all d+ 1 shares of a key (Eq. 1). Instead, if attacking
a shuffled gadget where a set of n operations are shuffled, the complexity of the
attack increases linearly with the size of the permutation (Eq. 2).

N ≥ c∏d
j=0 MI(Kj ;L)

(1) N ≥ c · n
MIu(K;L)

(2)

Here, MIu(K;L) denotes the mutual information of an unshuffled implemen-
tation and we will assume that an adversary is attacking a single 32-bit chip
register.

Shuffling Tuples. In the case of shuffling tuples, we are first masking an im-
plementation and then shuffling the masked operations as a whole. An adversary
thus needs to attack all n operations of a shuffling permutation to ensure that
they obtain the specific value they are interested in. Furthermore, they need to
obtain information about all shares of the value of interest, obtaining Eq. 3.

N ≥ c · n∏d
j=0 MIu(Kj ;L)

(3)

Shuffling Shares. In the shuffling shares scenario, we no longer shuffle entire
masked operations but instead shuffle across the shares of n operations. This
implies that an attacker wishing to attack a particular masked value needs to
perform multiple attacks on different shuffling permutations. The adversary has
a probability of 1

n to obtain the share of the desired value in a shuffling permu-
tation. Since they must additionally obtain all d + 1 shares of the value, they
must achieve this d+ 1 times, giving them a probability of

(
1
n

)d+1 to succeed.

N ≥ c · nd+1∏d
j=0 MIu(Kj ;L)

(4)

Shuffling Everything Light. Assuming an attacker recovering a single 32-bit
register, this scheme effectively doubles the difficulty for an attacker to obtain the
sought after register from the shuffling permutation. Therefore, all that changes
from shuffling shares is the numerator increasing by a factor of two.

N ≥ c · (2n)d+1∏d
j=0 MIu(Kj ;L)

(5)
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Scheme Comparison. We plotted the resulting number of traces needed ac-
cording to these formulas for different values of MIu(K;L). For this, we made
two simplifying assumptions: First, c is a constant depending on the key entropy
and the desired success rate of the attack and we simplify by equating it to the
key entropy alone. Second, we assume that the mutual information between leak-
age and different shares of a value are equal simplifying all denominators from∏d

j=0 MIu(K
j ;L) to MIu(K

0;L)d+1. Table 4 also showcases the highest MI value
such that the adversary needs 106 attack traces. We also show values for a lower
security order of d = 1 there to also account for the case that the masking order
of an actual implementation is reduced due to (micro-)architectural leakages of
share combinations.

Fig. 2: Number of traces needed to mount a successful attack vs. the mutual in-
formation between masking shares and leakage. “Baseline” denotes an unmasked,
unshuffled implementation while all others are 3rd-order PINI masked.

The plot is shown in Figure 2. The maximum value MIu(K;L) can take is
32 bits, if the mutual information between the leakage and the key contains all
information about the key. The baseline shown is an assumed implementation
that is neither masked nor shuffled. A simple 3rd-order masked, unshuffled im-
plementation already shows a significant improvement over the baseline, given
sufficiently low values for mutual information. Shuffling Tuples yields a further,
albeit not substantial, improvement over the unshuffled variant. Both Shuffling
Shares and Shuffling Everything Light exhibit a significant jump in the number
of traces needed, with these variants offering security levels between 104 and 106

traces for MI ≈ 1.
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Table 4: Highest MIu(K;L) value s.t. the adversary needs at least 1,000,000
attack traces. All implementations are 1st- or 3rd-order PINI masked.

Unshuffled Shuffle Tuples Shuffle Shares Shuffle EL
d = 3 0.0752 0.1125 0.376 0.7521

d = 1 0.0057 0.0126 0.0283 0.0566

6 Conclusion

Guided by the theoretical security evaluation we can conclude that all three
shuffling schemes present notable increases in security compared to an imple-
mentation utilising only masking as a countermeasure. Overall, Shuffle Every-
thing Light provides the best security gain in relation to performance cost, with
a (theoretical) ten-fold increase in permissible mutual information at a roughly
three-fold increase in clock cycles when compared to an only masked implemen-
tation. Shuffling Tuples proves to be a sound choice when there is not much spare
performance available, with an almost 50% increase in security, again compared
to an only masked implementation. while only increasing clock cycles by roughly
27%.

We also note that, while the schemes implemented are specific to the state
structure of Ascon and the 32-bit RISC-V devices targetted, the general method
of adapting countermeasures when the cipher state size is a multiple of 32 bits
(and possibly interleaved) remains applicable.

Finally, we feel it is important to give a brief disclaimer: While the security
estimates here are sound and the implementation should be secure from a theo-
retical standpoint, it is likely that through (micro-)architectural particularities
such as overwrite- or memory remnant effects [26], the real security and masking
order might be lower than the theoretical guarantees.

Future Work. While the theoretical analysis of the schemes devised in this
work seems promising, an actual side-channel evaluation is an important next
step to verify that the theoretical claims also hold up in practice, e.g. using coun-
termeasure dissection [8]. Additionally, the exploration of possible schemes for
combining masking and shuffling was far from exhaustive. It should certainly be
possible to find schemes coming even closer to the “Shuffle Everything” scheme
proposed in [2], thus further increasing the benefit to security. In the same vein,
the existing approaches could be streamlined further, e.g. by unifying the com-
putation of zij and zji for the PINI-AND gadgets into one shuffling block in
the case of shuffling shares and shuffling everything light rather than using sep-
arate shuffling blocks for them. Finally, investigating avenues for reducing the
randomness requirements for these schemes should prove useful to increase the
feasibility of these implementations, as shown in [25].
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A Implementation Paths Not Taken

In light of the optimisation presented in section 4.1, we maintain that it is
worthwhile to briefly discuss other means of implementing and optimising the
encryption that we decided against using.

As discussed in Section 2.1, we decided against implementing the substitution
layer as a masked lookup table [12]. While technically offering a performance
improvement at runtime, the initial computation of these masked LUTs and the
large memory requirement they impose for a four-share masked implementation
make them infeasible for several resource-constrained devices.

An option for implementing the linear layer, and in particular circumventing
the restriction of having no rotation instructions in RV32IM would have been to
bitslice multiple encryption blocks by having one register for every bit of each
state register and to then implement the rotations through “register renaming”.
Concretely, we could take 32 independent encryption blocks and bitslice them
so that all first bits of each block go into one register, all second bits into the
next, and so forth. In this case, the rotations of the linear layer would reduce to
“renaming” e.g. the “register containing all first bits” would be renamed to the
“register containing all second bits”, in the case of a rotation by one. Apart from
requiring a significant number of independent encryptions for efficient bitslicing
(i.e. a bulk-encryption usecase), this approach is also infeasible due to the sheer
number of registers needed. Since the Ascon state registers are 64 bits wide, we
would need 5*64 = 320 registers for storing all bits. The amount of loading and
storing needed to realise this would very likely negate any performance gained
from the free rotations.

Lastly, we could have approached the masking of the state differently in
that we put multiple shares into one register, an approach also known as share-
slicing. The benefit of this kind of slicing is that one can easily implement various
operations on shares by rotating some of the share-sliced registers. This approach
is especially appealing in architectures such as ARM, where certain instructions
allow one of the operands to be rotated before the operation, effectively for free.
Since such a construction does not exist for RV32IM, we cannot utilise this to
our advantage. Furthermore, recent works have also discovered that share slicing
also poses additional risks in a side-channel mitigation context [18].

B Additional figures
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Fig. 3: A visualisation of the three different shuffling approaches selected for this
implementation. Shown are two XOR operations on two 64-bit state registers,
respectively split into two third-order masked 32-bit registers. Each θ denotes
one set of operations to shuffle.
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Fig. 4: The three steps performed on the state during each round of the Ascon
permutation. Each rectangle represents one bit of the state.
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Fig. 5: A visualisation of interleaving and interleaved rotations.
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Fig. 6: Bits of randomness needed for linear operations per scheme depending on
the chosen masking order d. Based on the formulas listed in Table 1 for n = 5
in the case of shuffle tuples and shuffle shares, and n = 10 for shuffle EL.
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Fig. 7: Bits of randomness needed for non-linear operations per scheme depending
on the chosen masking order d. Based on the formulas listed in Table 1 for n = 5
in the case of shuffle tuples and shuffle shares, and n = 10 for shuffle EL.



Combined Masking and Shuffling for Side-Channel Secure Ascon on RISC-V 29

Fig. 8: The amount of traces needed to mount a successful attack per scheme and
masking order. The MI(K;L) is fixed to 0.0752, the amount where a third-order
masked but unshuffled implementation would require 106 traces to be broken.
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