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Abstract. Ascon has recently been selected by the National Institute
of Standards and Technology (NIST) as the lightweight cryptography
standard. Consequently, it is utilized in a multitude of environments and
devices. In this study, we examine the potential vulnerability of Ascon
software implementations to Correlation Power Analysis (CPA) attacks.
First, we conduct a comprehensive analysis of different approaches from
the literature for choosing the selection function used to compute inter-
mediate values in a CPA attack. Through both theoretical explanation
and experimental validation, we demonstrate how these choices influence
the success of the attack. Second, leveraging insights from our analysis,
we present, to the best of our knowledge, the first successful and practical
second-order CPA attack on a masked software implementation provided
by the Ascon team running on a 32-bit microcontroller. Our results show
that the full 128-bit key can be recovered in 4.7 hours through the anal-
ysis of 360,000 traces on classical laptop.

Keywords: Correlation Power Analysis · Ascon· Masking.

1 Introduction

Nowadays, the use of small computing devices, such as RFID tags, sensors, and
smart cards, is increasingly common. Although being time-proven to be a ro-
bust cipher, the Advanced Encryption Standard (AES) [1] is often too resource-
intensive for deployment in such low-end devices. This limit of the AES high-
lights the need for a more lightweight cipher. In this context, NIST initiated a
lightweight cryptography competition to seek a new standard. After a rigorous
selection process, Ascon [9] was announced as the new standard for lightweight
cryptography in February 2023. Prior to this, Ascon had also been included in
the final portfolio of the CAESAR competition. The careful analysis in these two
selection processes enforces the confidence of the security of Ascon in a black-box
model, in which the adversary only has access to the inputs and outputs.

However, the black-box model is not always sufficient to ensure security in
practice. Especially when implemented and executed in embedded devices, cryp-
tographic algorithms can be vulnerable to Side-Channel Attacks (SCA), which
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exploit physical leakages from the devices (e.g., power consumption, execution
time, electromagnetic radiations). Since the introduction of Differential Power
Attack (DPA) by Kocher et al. [13], power analysis attacks have become a promi-
nent research area. Over the years, many attack techniques have been developed,
for example, Template Attacks (TA) by Chari et al. [8], Correlation Power Anal-
ysis (CPA) by Brier et al. [6], Mutual Information Analysis (MIA) by Batina et
al. [2], Soft Analytical Side-Channel Analysis (SASCA) by Veyrat-Charvillon et
al. [24], Deep Learning Side-Channel Attacks (DLSCA) by Maghrebi et al. [15].

With the expected widespread deployment of Ascon in embedded devices,
where power leakages pose a significant threat, the need for studies on power
analysis attacks against implementations of Ascon is growing. So far, there has
not been much attention on this research area for Ascon. Samwel and Daemen
[21] introduced the first successful CPA attack on a noisy hardware implemen-
tation. In their work, the authors constructed an effective selection function for
computing the intermediate variable targeted by the attacks. Using the same se-
lection function, Roussel et al. [20] and Weissbart and Picek [26] also successfully
performed CPA attacks on a hybrid CMOS/MRAM hardware implementation
and a ARMv7m software implementation, respectively. Ramezanpour et al. [18]
conducted DPA and CPA attacks with a different selection function, but reported
that they failed to recover the key. The authors later proposed a deep learning-
based power analysis, which succeeded in key recovery. You et al. [27] introduced
an efficient template attack on a 32-bit software implementation. Lou et al. [14]
presented a SASCA attack with simulated traces for an 8-bit implementation.

To protect against power analysis attacks, masking [7,11] is one of the most
widely studied countermeasures. The core concept behind masking is to split the
sensitive variables into multiple shares and carry out the computations on these
shares. Ascon’s design, which features an efficient bitsliced implementation of
the S-boxes, facilitates the use of masking. Several masked software implemen-
tations were published by the Ascon team.1 Note that masking increases the
attack complexity rather than offering complete protection. A method of at-
tacking masked schemes is to combine the leakages from the individual shares
and perform a CPA on the aggregated leakages. This technique is known as
higher-order CPA [12,16,25]. When two shares are involved, the attack is re-
ferred to as a second-order CPA. Weissbart and Picek [26] attempted to perform
a second-order CPA on a masked software implementation of Ascon, but re-
ported a failure. The authors then proposed a successful deep learning-based
power analysis, which was later improved by Rezaeezade et al. [19].

Most of the state-of-the-art power attacks on (protected) implementations
of Ascon, including template attack [27], SASCA [14], deep learning attacks
[26,19], are profiled attacks, in which the powerful adversary is assumed to have
full control on a copy of the targeted device and can obtain a priori knowledge
about the implementation details. In contrast, the CPA attack, which our work
focuses on, is a non-profiled attack corresponding to a weaker adversary. The
adversary is only able to observe the device’s leakages, i.e., the power consump-

1 See https://github.com/ascon/simpleserial-ascon
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tion when the cryptographic algorithm is executed. No detailed knowledge about
the device is required. The CPA attack is univariate, assuming the real leakage
function closely matches the chosen leakage model (e.g., Hamming weight). Its
goal is to recover the key through a statistical analysis of key-dependent physical
leakages.

An important factor that significantly affects the success of a CPA attack
is the choice of the selection function for computing intermediate values. In the
literature, different approaches of choosing this function have been proposed,
leading to either a success [21] or a failure [18] in key recovery. One approach
relies on heuristics, such as using the S-box computation as the selection function
[18], which has been well-studied in CPA attacks on AES. Another approach
derives from observing of how processed data leaks into the power consumption
[21]. In both cases [21,18], whether successful or not, there is a notable lack of
analysis regarding the impact of these choices of the selection function on the
success of the CPA attack.

Contributions. First, we provide a comprehensive analysis of the selection func-
tions used in the literature. Through both theoretical explanation and experi-
mental validation, we demonstrate that different choices of the selection function
can determine the success or failure of a CPA attack on Ascon. Second, leverag-
ing insights from our analysis, we present, to our knowledge, the first successful
and practical second-order CPA attack against a masked software implementa-
tion of Ascon. We detail how the attack can be performed with modest resource
requirements. To validate our attack path, we use the 32-bit ARMv6 masked
implementation provided by the Ascon team. Power traces are recorded from
executions of this implementation on a 32-bit STM32F303 microcontroller. Our
results show that the full 128-bit key can be recovered successfully in 4.7 hours
using 360,000 traces.

For the sake of reproducibility, we publish the source code of the experiments
at: https://github.com/nvietsang/socpa-ascon

Outline. This paper is organized as follows. Section 2 provides the background
knowledge. Section 3 presents a thorough analysis of the selection functions
used in the literature. Section 4 presents the practical second-order CPA attack.
Finally, Section 5 concludes our work and provides some perspectives.

2 Preliminaries

In this section, we first briefly recall the principle of the Correlation Power
Analysis (CPA) attacks. Next, we present the self-contained background of the
Ascon cipher. Finally, we provide the information on the devices and the setup
in our experiments.

2.1 CPA attacks

The goal of CPA is to recover the key based on a number of power traces recorded
while the cryptographic algorithm is executed. The main advantage of CPA is
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that it does not require detailed knowledge about the cryptographic device.
Knowing the algorithm that is executed by the device is usually sufficient. CPA
attacks analyze the dependence between the power consumption at specific mo-
ments and the processed data. The attack procedure consists of the following
five steps:

1. Choose an intermediate variable of the executed algorithm as the attack
point. This intermediate variable needs to be a function f(d, k), called se-
lection function, of a part of the key k and the known non-constant data d
(e.g., plaintext).

2. Measure the power consumption of the device while it executes the crypto-
graphic algorithm ℓ times. For each execution, the adversary records the data
value d involved in the selection function and a power trace of s samples.
Then, ℓ data values are written as a vector d = (d1, . . . , dℓ), and ℓ power
traces are written as a matrix T of size ℓ × s. It is important to note that
the traces must be correctly aligned.

3. Calculate hypothetical intermediate values for every possible candidate of
k. Let k = (k1, . . . , kp) be the vector of p possible candidates for k, also
usually referred to as key hypotheses. For each key hypothesis, the adversary
uses the selection function f(d, k) to calculate the hypothetical intermediate
values corresponding to the vector d. Performing this calculation for all key
hypotheses results in a matrix of hypothetical intermediate values, denoted
by V, of size ℓ× p.

4. Map hypothetical intermediate values to hypothetical power consumption
values. The adversary chooses a leakage model to estimate the power con-
sumption (i.e., hypothetical power consumption) exposed by the device when
processing a value. In this work, we use the Hamming weight model. Each
value in V is then mapped to a corresponding hypothetical power consump-
tion value, resulting in a hypothetical power consumption matrix H of size
ℓ× p.

5. Compare the hypothetical power consumption values with the power traces.
The adversary uses the Pearson’s correlation coefficient to examine the lin-
ear correlation between the hypothetical power consumption values of each
key candidate with the measured traces at every position. Specifically, he
calculates the correlation coefficient between each column hi of the matrix
H and each column tj of the matrix T, resulting the element ri,j of the
matrix R of size p× s, where

ri,j =

∑ℓ
u=1

(
hu,i − hi

) (
tu,j − tj

)√∑ℓ
u=1

(
hu,i − hi

)2√∑ℓ
u=1

(
tu,j − tj

)2 .
In the above equation, the values hu,i and tu,j (resp. hi and tj) denote the
u-th elements (resp. mean values) of the columns hi and tj .

The key can be recovered based on the fact that the higher value ri,j indicates
a stronger linear corelation between the columns hi and tj , suggesting a better
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match under the assumed leakage model. Let ck be the index of the correct key
kck (i.e., the key that is used in the device) in the vector k, and ct be the index
of the power consumption values tct that depend on the intermediate values vck.
The columns hck and tct should be strongly correlated. Thus, the highest value
rck,ct in the matrix R reveals the indexes of the correct key ck and the position
ct.

2.2 Ascon

Ascon [9] is a suite of Authenticated Encryption with Associated Data (AEAD)
and hashing algorithms, using the duplex sponge construction [4]. This paper
considers the recommended version of authenticated cipher, Ascon-128 (referred
to as Ascon throughout the paper). The encryption process of Ascon is de-
picted in Figure 1. It takes as input a key K of 128 bits, a nonce N of 128 bits,
associated data A1, . . . , As, each of 64 bits, and plaintexts P1, . . . , Pt, each of 64
bits. It produces as output a tag T of 128 bits and ciphertexts C1, . . . , Ct, each
of 64 bits. This tag is used to authenticate the ciphertexts in the decryption
process.

Fig. 1: Encryption in Ascon [9].

The permutations, denoted by pa and pb, are the core of the construction.
These permutations consist of a = 12 rounds and b = 6 rounds, respectively.
Each round is composed of three steps operating on a 320-bit state: (1) addition
of constants, (2) substitution layer (S-box), and (3) linear diffusion layer, as
depicted in Figure 2. The 320-bit state is split into five words of 64 bits. These
words can be stored in one or more registers, facilitating the translation from
mathematical description to efficient implementation.2

Let x0, . . . , x4 denote five 64-bit words of the round input. In the first step, a
round constant is added to the rightmost eight bits of the word x2. As the step
of constant addition is not important in our attack, we simplify the notation by
also denoting the output of the first step as x0, . . . , x4. The second step is a non-
linear transformation operating on five bits, one bit from each word of the first
step output x0, . . . , x4. Let y0, . . . , y4 denote the output state of the S-box, and
2 Implementations for 8-bit, 32-bit, 64-bit architectures can be found at https://
github.com/ascon/ascon-c

https://github.com/ascon/ascon-c
https://github.com/ascon/ascon-c
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(a) Three steps of a round (b) An S-box computation.

Fig. 2: Each step in a round [9].

1 (in bold) denote a word of full 64 bit 1s. The algebraic normal form (ANF) of
the S-box with operations performed on the entire 64-bit words (bitsliced form)
can be written as:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0,

y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0,

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,

y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0,

y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

(1)

At the beginning of the initialization phase (Figure 1), the 64-bit initialization
vector IV is stored in the word x0, the two 64-bit halves of the key (k0, k1) =
K are stored in the words x1 and x2, and the two 64-bit halves of the nonce
(n0, n1) = N are stored in the words x3 and x4. The S-box computation in the
first round of the initialization phase, where our attack focuses on, thus can be
written as (the constant addition step is omitted for the sake of simplicity):

y0 = n1k0 ⊕ n0 ⊕ k1k0 ⊕ k1 ⊕ k0IV⊕ k0 ⊕ IV,

y1 = n1 ⊕ n0k1 ⊕ n0k0 ⊕ n0 ⊕ k1k0 ⊕ k1 ⊕ k0 ⊕ IV,

y2 = n1n0 ⊕ n1 ⊕ k1 ⊕ k0 ⊕ 1,

y3 = n1IV⊕ n1 ⊕ n0IV⊕ n0 ⊕ k1 ⊕ k0 ⊕ IV,

y4 = n1k0 ⊕ n1 ⊕ n0 ⊕ k0IV⊕ k0.

(2)

The third step, linear diffusion, rotates each word at the S-box output twice
and XORs with itself. Let z0, . . . , z4 denote the output of the linear diffusion
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layer. The linear functions applied to each word are:

z0 = y0 ⊕ (y0 ≫ 19)⊕ (y0 ≫ 28),

z1 = y1 ⊕ (y1 ≫ 61)⊕ (y1 ≫ 39),

z2 = y2 ⊕ (y2 ≫ 1)⊕ (y2 ≫ 6),

z3 = y3 ⊕ (y3 ≫ 10)⊕ (y3 ≫ 17),

z4 = y4 ⊕ (y4 ≫ 7)⊕ (y4 ≫ 41).

(3)

2.3 Experiment setup

We use a ChipWhisperer Lite board, integrated with an STM32F303 32-bit ARM
target microcontroller, to record the power consumption traces. The device is
run with the default clock frequency 7.37 MHz. The ChipWhisperer board is
connected to a MacBook Air M1 with 16 GB of RAM via a USB cable. All the
analyses in this paper are also conducted on this computer. The details of the
specific implementations used for our attack will be provided later.

3 Choices of selection function

The first and important step of a CPA is the selection of an intermediate vari-
able as the attack point. This intermediate variable must be the output of a
function (referred to as the selection function) that takes as input a small por-
tion of the key and known non-constant data. As evidenced in certain prior
works [21,26,18,20], an intermediate variable in the first round of the initializa-
tion phase seems well-suited for this purpose. This is due to the fact that the
first round’s inputs are the key and the nonce (see Figure 1), where the nonce
can be regarded as the known non-constant data.

In the literature, to our knowledge, there exists two approaches of choosing
the intermediate variable and the selection function in the first round for CPA
attacks on Ascon. The first approach, used by Ramezanpour et al. [18], is to
straightforwardly choose the S-box output as the intermediate variable and the
S-box computation as the selection function. This is similar to the choice of
S-box output as the attack point in many well-studied CPA attacks on AES.
Applying this approach, Ramezanpour et al. reported a failure for their attack
(before introducing a successful deep learning attack), but did not provide any
explanation. The second approach, proposed by Daemen and Samwel [21] and
later used in [26,20], is to choose the linear diffusion layer output as the inter-
mediate variable and fine-tune the S-box computation for the selection function.
Applying this approach, the attacks in [21,26,20] succeeded in recovering the
key. Daemen and Samwel provided the rationale behind their adjustment in the
S-box computation to derive the selection function, but did not analyze how
it impacts the success of the CPA attack. In other words, the authors did not
explain why it is necessary to fine-tune the S-box computation instead of using
it directly as the selection function.
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In this section, we take a closer look into the two approaches. For each of
them, we begin with a brief description of the selection function, and then analyze
its impact on the success of the CPA attack. To simplify distinction, we refer the
first approach as using the pure S-box computation (Subsection 3.1), and the
second approach as using the fine-tuned S-box computation (Subsection 3.2), as
the selection function.

3.1 Pure S-box computation as selection function

In Equation 2, the S-box computation is written in a bitsliced form in which
64 parallel applications of the 5-bit S-box (corresponding to the entire 64-bit
words) are performed at once. For analysis, we consider a single application of
the S-box. Let the superscript j denote the index of the j-th bit of a 64-bit word,
where 0 ≤ j ≤ 63. The computation of the five S-box output bits yj0, . . . , y

j
4 is

written as:

yj0 = nj
1k

j
0 ⊕ nj

0 ⊕ kj1k
j
0 ⊕ kj1 ⊕ kj0IV

j ⊕ kj0 ⊕ IVj ,

yj1 = nj
1 ⊕ nj

0k
j
1 ⊕ nj

0k
j
0 ⊕ nj

0 ⊕ kj1k
j
0 ⊕ kj1 ⊕ kj0 ⊕ IVj ,

yj2 = nj
1n

j
0 ⊕ nj

1 ⊕ kj1 ⊕ kj0 ⊕ 1,

yj3 = nj
1IV

j ⊕ nj
1 ⊕ nj

0IV
j ⊕ nj

0 ⊕ kj1 ⊕ kj0 ⊕ IVj ,

yj4 = nj
1k

j
0 ⊕ nj

1 ⊕ nj
0 ⊕ kj0IV

j ⊕ kj0.

(4)

It can be observed that the values yj0, y
j
1, y

j
2, y

j
3 take as input two bits of

the nonce (nj
0, n

j
1) that are known non-constant data, and two bits of the key

(kj0, k
j
1) that need to be guessed in our attack. The fifth bit corresponds to known

constant data belonging to the IV. Recall that IV is the 64-bit initialization
vector, IV = 80400c0600000000 in hexadecimal. A small difference in yj4 is that
only one bit of the key (kj0) is involved.

A single S-box output bit as the intermediate variable. We now analyze the
impact on the success of attacks if one chooses an output bit in yj0, . . . , y

j
4 as the

intermediate variable and the S-box computation as the selection function. Let
us first consider the computation of yj0. There are 4 possible key candidates for
(kj0, k

j
1), and 4 possible values of the known non-constant data (nj

0, n
j
1). Table 1

presents the distribution of yj0 corresponding to every possible key candidate. In
the CPA attack on Ascon, we input (random) nonces into the algorithm and
measure the corresponding power traces. The intermediate variable yj0, computed
from (kj0, k

j
1) and (nj

0, n
j
1), follows this distribution.

We examine the linear corelation between these distributions by computing
Pearson’s correlation coefficient between the distribution vectors for each key
pair. For example, the vectors (0, 0, 1, 1) and (1, 1, 0, 0) represent the distri-
butions of (kj0, k

j
1) = (0, 0) and (kj0, k

j
1) = (0, 1), respectively. These two vectors

are correlated with a correlation coefficient of −1. Table 1 presents two corre-
lation coefficients corresponding to the distribution vectors in red and blue. As
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observed, two key pairs result in distributions that are fully correlated (i.e., with
a correlation coefficient of ±1).

Table 1 presents the correlation coefficients for only two key pairs. We then
extend this analysis by performing similar calculations for all possible key pairs.
Table 2 (top left) summarizes the correlation coefficients between their corre-
sponding distributions for yj0. Suppose 1 among 4 possible key candidates is the
correct key. This analysis of yj0 implies that if yj0 is selected as the intermediate
variable, there will always exist an incorrect key candidate which hypothetical
power consumption values correspond to are as highly correlated with the power
traces as those of the correct key. Consequently, the correct key and this incorrect
key cannot be distinguished in CPA, where the hypothetical power consumption
values of the correct key are expected to exhibit the highest correlation with the
power traces. As in Table 1, such pairs of correct key and incorrect key, for ex-
ample, are (0, 0) and (0, 1), (1, 0) and (1, 1). Figure 3 illustrates the experiment
for this analysis. It can be observed that the correlation traces for the candidate
pairs (0, 0) and (0, 1) (in blue), as well as (1, 0) and (1, 1) (in red), are identical.
Table 1 also shows that the value of the IV bit has no impact on the correlation
score. This is expected, as when IVj = 1, it either negates (for vectors in red)
or has no effect (for vectors in blue) on all outputs of the selection function for
IVj = 0.

(kj
0, k

j
1)

(nj
0, n

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 0 1 1 1
(0,1) 0 1 0 0
(1,0) 1 0 0 0
(1,1) 1 0 1 1

Correlation -1 1

(kj
0, k

j
1)

(nj
0, n

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1 0 1 1
(0,1) 1 0 0 0
(1,0) 0 1 0 0
(1,1) 0 1 1 1

Correlation -1 1
Table 1: Distribution of yj0 corresponding to every possible key candidate when
IVj = 0 (left) and when IVj = 1 (right). In each table, the correlation value
in red (resp. blue) is computed using Pearson’s correlation coefficient formula
applied to the two vectors in red (resp. blue).

Note that the keys in those pairs are also not distinguishable in a DPA attack,
where the values of yj0 are used to divide the traces into two sets (one for yj0 = 0

and the other for yj0 = 1). For instance, the division into two sets will be identical
for the two key candidates (0, 0) and (0,1), or (1, 0) and (1, 1), as the resulting
distributions of yj0 for these candidates are identical, as shown in Table 1. As
a consequence, the difference of means of the two sets will also be identical for
the two candidates. In the DPA attack of Ramezanpour et al. [18], the authors
chose yj0 as the selection function. The authors reported that their DPA attack
failed to find the correct key with more than 40K traces, but did not provide
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(a) (kj
0, k

j
1) = (0, 0) (b) (kj

0, k
j
1) = (0, 1)

(c) (kj
0, k

j
1) = (1, 0) (d) (kj

0, k
j
1) = (1, 1)

Fig. 3: Correlation traces when using yj0 as the intermediate variable. The calcu-
lations use 1000 traces recorded from the execution of the reference implemen-
tation.

the reason. According to our analysis, their choice of the intermediate variable
and the selection function could be the explanation for this failure.

We conduct a similar analysis for each of yj1, y
j
2, y

j
3 and yj4, and present the

correlations between the distributions of all possible key pairs for each case in
Table 2. The results are similar to those of yj0, except for yj4. Specifically, for any
given correct key in cases of yj1, y

j
2 and yj3, there will always be an incorrect key

that produces the same distribution, rendering the correct key indistinguishable
from the incorrect one in DPA and CPA attacks. This is even worse in the cases
of yj2 and yj3 (represented by the table of full correlations with values of 1 in
Table 2), as all other incorrect key candidates yield identical distributions (or
opposite distributions corresponding to the correlation coefficient of −1). Thus,
we conclude that CPA attacks (resp. DPA attacks) using yj0, y

j
1, y

j
2 or yj3 as the

intermediate variable, which aims to identify the key candidate corresponding
to the highest value of correlation (resp. of the mean difference) as the correct
one, will not succeed in obtaining a unique correct key, regardless the number
of traces.

We observe an exception in the case of yj4 (Table 2, bottom right). The
distributions of the two possible key candidates (since only kj0 is involved in yj4)
are uncorrelated. This implies that yj4, when used as a selection function, could
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(kj
0, k

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1 1 - -
(0,1) 1 1 - -
(1,0) - - 1 1
(1,1) - - 1 1

yj
0

(kj
0, k

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1 - - 1
(0,1) - 1 1 -
(1,0) - 1 1 -
(1,1) 1 - - 1

yj
1

(kj
0, k

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1 1 1 1
(0,1) 1 1 1 1
(1,0) 1 1 1 1
(1,1) 1 1 1 1

yj
2 and yj

3

kj
0 0 1

0 1 0

1 0 1

yj
4

Table 2: Absolute correlations of distributions associated to all possible key pairs
for yj0, y

j
1, y

j
2, y

j
3, y

j
4 when IVj = 0. The entries with value 0 are indicated by “-

” to facilitate reading. An interpretation example: the value 1 at row (0,0) and
column (0,1) in the top-left table indicates a correlation coefficient of 1, meaning
the the distribution vectors corresponding to the key candidates (kj0, k

j
1) = (0, 0)

and (kj0, k
j
1) = (0, 1) are fully correlated.

yield a unique key candidate given enough traces. This also suggests that if we
fix, for example, kj1 = 0 in yj0’s table (i.e., removing the first and third columns
as well as the first and third rows in the top-left table), the table reduces to one
similar to yj4. A similar fix applies to the yj1’s table. Using yj0 and yj1 with these
fixes might also lead to a unique key candidate.

Later, in Subsection 3.2, we will show that yj4 or yj0 and yj1 with the fixes
are similar to the fine-tuning in the second approach and will play an important
role. However, using them directly as selection functions makes the DPA and
CPA attacks prone to failure.

Hamming weight of S-box output as the intermediate variable. We now consider
the case where the Hamming weight of the 5-bit S-box output is used as the inter-
mediate variable and the computations in Equation 4 as the selection function.3
Employing the Hamming weight of the S-box output, as done by Ramezanpour
et al. [18] in their CPA attack on Ascon, is a very common approach in CPA
attacks on AES. Recall that there are still 4 possible key candidates for (kj0, k

j
1)

and 4 possible values for (nj
0, n

j
1). As in the above analysis, we calculate the the

Hamming weight distributions of the S-box output for every key candidate:

HW(yj0||y
j
1||y

j
2||y

j
3||y

j
4),

3 This is specific to the hardware implementation design where a register stores a 5-bit
S-box output, with 1 bit from each of the 5 words. In other words, the register is
designed to operate along the vertical dimension in Figure 2a. This design, adopted
by Ramezanpour et al. [18], differs from the intent of the reference implementation,
where a register is meant to store an entire word or part of a word, corresponding
to the horizontal dimension in Figure 2a.
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where HW(·) denotes the Hamming weight and || denotes the concatenation.
We then calculate the correlation between distributions generated by all possible
key pairs, as shown in Table 3. We see that no key pairs with fully correlated
distributions are observed. There are, however, still some very high correlations,
for example, 0.90 between (1,0) and (1,1) in the left table, 0.93 between (0,1) and
(0,0) in the right table. This suggests that the hypothetical power consumption
values corresponding to some incorrect key candidates (besides the correct one)
are also highly correlated to the power traces, making it difficult to distinguish
the correct key. Especially in practical scenarios where the traces are heavily
affected by noise, the CPA may fail or require a very large number of traces to
find the correct key (similar to the remark of Brier et al. [6]).

(kj
0, k

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1.00 0.15 0.89 0.87
(0,1) 0.15 1.00 0.48 0.09
(1,0) 0.89 0.48 1.00 0.90
(1,1) 0.87 0.09 0.90 1.00

(kj
0, k

j
1) (0,0) (0,1) (1,0) (1,1)

(0,0) 1.00 0.93 0.52 0.17
(0,1) 0.93 1.00 0.48 0.27
(1,0) 0.52 0.48 1.00 0.09
(1,1) 0.17 0.21 0.09 1.00

Table 3: Absolute correlations between the Hamming weight distributions of the
S-box output for each key pair when IVj = 0 (left) and when IVj = 1 (right).

Our analysis shows that using the Hamming weight of the S-box output as
the intermediate variable is not effective for CPA attacks. In [18], Ramezanpour
et al. adopted this approach for their CPA attack. The authors reported that
their attack failed to recover the correct key even after using more than 40K
traces, but they did not provide any justification. Since we do not have access
to their implementation, we cannot determine the precise cause of the failure.
However, we believe that the insights from our analysis here may contribute to
explaining this outcome.

3.2 Fine-tuned S-box computation as selection function

In the attack by Daemen and Samwel [21], the authors chose the output of
the linear diffusion layer in their hardware implementation as the attack point,
corresponding to the location of the registers. The activity of these registers at
the end of each round (load/store) is assumed to leak information through power
consumption. A notable contribution of their work is the adjustment applied to
S-box computation before using it as the selection function. We now recall this
adjustment and then analyze its impact on the success of CPA attacks.

As in [21], we only consider yj0, y
j
1 and yj4 in Equation 4 as their computations

contain non-linear terms between the key and the nonce. Let us focus on yj0 as
an example. Its computation in Equation 4 is rewritten as follows:

yj0 = kj0(n
j
1 ⊕ 1)⊕ nj

0 ⊕ kj0k
j
1 ⊕ kj0IV

j ⊕ kj1 ⊕ IVj .
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Following Bertoni et al. [3], the term kj0k
j
1 ⊕ kj0IV

j ⊕ kj1 ⊕ IVj can be removed
because, for the fixed correct key in the device, it is independent of the nonce
and contributes a constant amount to the activity that drives the targeted power
consumption of the register containing y0. Note that this removal is similar to
fixing kj1 = 0 (and IVj = 0) as discussed about the reduction for yj0 in Table 2.
The fine-tuned version of yj0, denoted by ỹj0, is:

ỹj0 = kj0(n
j
1 ⊕ 1)⊕ nj

0. (5)

As the attack point is the activity of the register at the linear diffusion
layer output (not at the S-box output), we take the operation of this layer into
account. Recall from Equation 1 that the first 64-bit output word z0 of this layer
is computed as:

z0 = y0 ⊕ (y0 ≫ 19)⊕ (y0 ≫ 28).

The computation of the j-th bit of z0 (0 ≤ j ≤ 63) thus is:

zj0 = yj0 ⊕ yj+36
0 ⊕ yj+45

0 . (6)

The additions j+36 and j+45 are implicitly taken modulo 64. Applying Equa-
tion 5 to Equation 6 results in the fine-tuned version of zj0, denoted by z̃j0, which
is used as the selection function to recover k0 (three bits at a time):

z̃j0 =
(
kj0(n

j
1 ⊕ 1)⊕ nj

0

)
⊕
(
kj+36
0 (nj+36

1 ⊕ 1)⊕ nj+36
0

)
⊕
(
kj+45
0 (nj+45

1 ⊕ 1)⊕ nj+45
0

)
.

(7)

Similarly, we can derive the selection functions for recovering k0 by fine-
tuning yj4, and for recovering k1 by fine-tunning yj1. The detailed derivation
steps are provided in Section A. Here, we present the fine-tuned version of zj1,
denoted by z̃j1, which is used as the selection function to recover k1 (three bits
at a time):

z̃j1 =
(
nj
0(k

j
01 ⊕ 1)⊕ nj

1

)
⊕
(
nj+3
0 (kj+3

01 ⊕ 1)⊕ nj+3
1

)
⊕
(
nj+25
0 (kj+25

01 ⊕ 1)⊕ nj+25
1

)
,

(8)

where kj01 = kj0 ⊕ kj1. Note that kj1 is not directly recovered, instead, kj01 is
recovered when z̃j1 is used as the selection. Then, kj1 is derived as kj1 = kj01 ⊕ kj0,
with kj0 recovered from the CPA using z̃j0 as the selection function.

Impact of fine-tuning. Let us analyze the selection function z̃j0. A similar analysis
applies to z̃j1 and we present here the results for both z̃j0 and z̃j1. We begin by
examining the core of z̃j0, which is ỹj0 (Equation 5). As before, we calculate



14 Nguyen et al.

the distribution of ỹj0 for all possible candidates for kj0 (2 candidates in total) in
Table 4. It can be seen that the distributions produced by the two key candidates
are uncorrelated to each other.

kj
0

(nj
0, n

j
1) 0 1

(0,0) 0 1
(0,1) 0 0
(1,0) 1 0
(1,1) 1 1

Correlation 0

kj
01

(nj
0, n

j
1) 0 1

(0,0) 0 0
(0,1) 1 1
(1,0) 1 0
(1,1) 0 1

Correlation 0
Table 4: Distribution of ỹj0 (left) and ỹj1 (right) corresponding to every possible
key candidate.

We then extend this calculation to the selection function z̃j0. Table 5 presents
the correlations between distributions of all possible key pairs. Note that 3 key
bits and 6 nonce bits involve in z̃j0. We thus have 8 key candidates. As we can
see, the distribution associated with an arbitrary key is uncorrelated with that
of any other key. This makes the correlation between the hypothetical power
consumption associated with the correct key and the power traces stand out
those of the incorrect keys. Figure 4 illustrates the experimental result for this
analysis. It can be seen that the prominent peaks appear exclusively in the
correlation trace of a single (correct) key candidate (0, 0, 1). This explains the
success of the attacks in [21], as opposed to the failure of the attack in [18],
which relied on using the pure S-box computation as the selection function.

(kj
0, k

j+36
0 , kj+45

0 )

or (kj
01, k

j+3
01 , kj+25

01 )
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) 1 - - - - - - -
(0,0,1) - 1 - - - - - -
(0,1,0) - - 1 - - - - -
(0,1,1) - - - 1 - - - -
(1,0,0) - - - - 1 - - -
(1,0,1) - - - - - 1 - -
(1,1,0) - - - - - - 1 -
(1,1,1) - - - - - - - 1

Table 5: Absolute correlations of distributions associated to all possible key pairs
using the selection functions z̃j0 and z̃j1. The entries with value 0 are indicated
by “-” to facilitate reading.
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Fig. 4: Correlation traces for all key candidates when using z̃j0 as the intermediate
variable. Peaks appear in the correlation trace corresponding to the correct key
candidate (kj0, k

j+36
0 , kj+45

0 ) = (0, 0, 1). The calculations use 1000 traces recorded
from the execution of the reference implementation.

Impact of linear diffusion layer. Recall that Daemen and Samwel [21] choose the
linear diffusion layer output as the attack point since it is where the registers
locate in their hardware implementation. In software implementations, the term
“register” refers to variables or memory locations used to emulate the behavior
of hardware registers. Thus, a variable update after an operation can be seen
as a register activity consuming power. Previously, we demonstrated that the
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pure S-box output (yj0, y
j
1, y

j
2, y

j
3) produce distributions that are correlated to

each other for some pairs of key candidates (Table 2). This leads to the fact that
employing one of yj0, y

j
1, y

j
2, y

j
3 as the intermediate variable results in multiple

key candidates ranking equally with the correct key. We then showed that the
fine-tuned S-box functions (ỹj0, ỹ

j
1, ỹ

j
4) yield distributions that are uncorrelated

for all possible pairs of key candidates (Table 4). Now, we are interested in
investigating whether ỹj0, ỹ

j
1, ỹ

j
4 are also good choices for the intermediate variable

(in addition to z̃j0, z̃
j
1, z̃

j
4) in software implementations. In other words, we aim to

determine whether accounting for the linear operations really impacts the success
of CPA attacks, or is just primarily relevant for attacks targeting hardware
implementations with registers at the output of the linear diffusion layer (as in
[21]).

Let us consider ỹj0 from Equation 5 with two possible key candidates, kj0 = 0

and kj0 = 1. Below are the results of ỹj0 for each key candidate:

ỹj0 = kj0(n
j
1 ⊕ 1)⊕ nj

0 =

{
nj
0 if kj0 = 0,

nj
0 ⊕ nj

1 ⊕ 1 if kj0 = 1.

We will use the visualization of peaks in correlation traces for explanation. First,
when kj0 = 0, ỹj0 = nj

0, meaning that the values of the intermediate variable ỹj0
are identical to the values of the nonce bit nj

0. As a result, the values of ỹj0 become
correlated with the power consumption caused by the activity of the registers
containing nj

0 (in addition to that of the registers containing yj0). Consequently,
many peaks appear in the correlation trace for kj0 = 0, as the blue peaks shown
in Figure 5a. To support this explanation, we determine the locations where the
activity of the registers containing nj

0 cause the power consumption, as illustrated
by the light gray peaks in Figure 5a.4

Second, when kj0 = 1, ỹj0 = nj
0 ⊕ nj

1 ⊕ 1, meaning that the values of the
intermediate variable ỹj0 are the inverse of nj

0⊕nj
1 (correlation coefficient of −1).

In the S-box computation shown in Listing 1.2 (Section C), there does exist
the operation nj

0 ⊕ nj
1. As a result, the values of ỹj0 become correlated with the

power consumption caused by this operation, leading to the appearance of many
peaks in the correlation trace for kj0 = 1, as the blue peaks shown in Figure 5b.
Similarly to before, we identify the locations where the activity of the operation
nj
0 ⊕ nj

1 causes the power consumption, as illustrated by the light gray peaks in
Figure 5b, to support our argument.5

To sum up, high peaks appear in correlation traces for all key candidates,
making the CPA prone to failure in recovering the correct key. The analyses on
ỹj4 and ỹj1 yield analogous results. In contrast, peaks appear only for the correct
key candidate when the linear diffusion layer is accounted for, as in Figure 4.
This demonstrates that the linear diffusion layer in the selection functions of z̃j0
4 For each of the recorded nonces, we extract a byte value from the 64-bit word n0

that contains the bit nj
0. We then compute the correlation between the Hamming

weights of those values and the power traces.
5 Similarly to before, but for n0 ⊕ n1 instead of n0.
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(a) kj
0 = 0 (b) kj

0 = 1

Fig. 5: Correlation traces when using ỹj0 as the intermediate variable. The calcu-
lations use 1000 traces recorded from the execution of the reference implemen-
tation.

(Equation 7) and z̃j1 (Equation 8) plays an important role in the success of the
CPA attacks, even in software implementations.

4 Second-order correlation power analysis

In the previous section, we thoroughly analyzed various approaches for choosing
the intermediate variable and the selection function, along with their impact on
the success of CPA attacks. Our analysis shows that z̃j0 (Equation 7) and z̃j1
(Equation 8) are effective choices for the intermediate variables to recover the
first and the second halves of the key. In this section, we apply these two selection
functions in order to perform a second-order CPA attack on a masked software
implementation with two shares. For our experiment, we use the 32-bit ARMv6
implementation6 submitted to the call for protected software implementations
of finalists in the NIST lightweight cryptography standardization process by the
Ascon team.7

We begin by configuring an encryption execution with the minimum number
of rounds, using empty associated data and an empty plaintext (i.e., associated
data and plaintext with length of 0) to skip the internal permutation blocks (see
Figure 1). The execution thus consists of 24 rounds: 12 rounds for the initial-
ization phase and 12 rounds for the finalization phase. During an execution of
these 24 rounds, we record a power consumption trace. Variance calculations are
then applied to determine the length and starting index of each round, based
on the assumption that the correctly aligned frames will minimize variance (i.e.,

6 https://github.com/ascon/simpleserial-ascon, in protected_bi32_armv6.
7 https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_
Implementations.pdf

https://github.com/ascon/simpleserial-ascon
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
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(a) Power consumption of the first 12 rounds.

(b) Power consumption of the first round.

Fig. 6: Power consumption of initialization rounds.

24 frames should align well when overlapped). Figure 6a shows the power con-
sumption trace for the first 12 rounds of the initialization phase, while Figure 6b
illustrates the frame corresponding to the first round, consisting of 1400 samples.
We focus on the power consumption of this first round, as our attack utilizes the
linear diffusion layer outputs z̃j0 and z̃j1 as intermediate variables.

4.1 First-order leakage assessment

In the repository of the targeted masked software implementation,6 the authors
reported that the 2-share implementation might leak information due to poten-
tial collisions between the two shares in hardware. However, they introduced
device-specific fixes to prevent first-order leakages, specifically by inserting an
MOV instruction with a value of 0 at appropriate locations to avoid these collisions.

Using a similar hardware platform (STM32F303), we expect these fixes to
remain effective in our experiment. To verify the absence of first-order leakages in
the 2-share implementation under attack, we employ the widely used Test Vector
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Leakage Assessment (TVLA) [10]. This methodology applies a non-specific, fixed
vs. random t-test statistic on two sets of traces, one with a fixed input and the
other with random inputs. The t-score at the i-th sample, denoted as ∆[i], is
computed as:

∆[i] =
µf[i]− µr[i]√
σ2

f [i]

nf
+

σ2
r [i]

nr

where µf, σf, and nf (resp. µr, σr, and nr) represent the estimated mean, standard
deviation, and the number of traces for the fix-input set (resp. random-input set).
Leakage is detected if the absolute t-score exceeds the commonly used threshold
of 4.5, in which case the null hypothesis that the means of the two sets are similar
is rejected.

Fig. 7: Non-specific t-test on the first 12 rounds with 300,000 traces (nf = nr =
150, 000).

Figure 7 shows the t-test results for all the time samples of the traces recorded
during the execution of the first 12 rounds. As expected, no first-order leakages
are observed, ensuring that we will not accidentally exploit them in our second-
order CPA attack.

4.2 Pre-processing power traces

A second-order CPA attack consists of two phases: power traces pre-processing
and the standard CPA. In the first phase, samples within a trace are combined
to produce a pre-processed trace. This combination can cause the length of each
trace to increase quadratically, significantly raising the attack complexity. There-
fore, we detail the pre-processing steps below to ensure that the attack remains
time and memory efficient in practice.

Let t = [t1, . . . , ts] represent a power trace containing s samples, where in
our case, s = 1400. We can combine the samples within t using various methods,
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such as normalized product, absolute difference, or sum [17,23]. Among these,
the normalized product has been shown to be the most effective when applying
Pearson’s correlation coefficient with the Hamming weight leakage model [23]. In
this work, we adopt the normalized product for trace pre-processing. According
to this method, the sample t′i,j in the pre-processed trace t′ derived from two
power samples ti and tj (1 ≤ i, j ≤ s) in t, is calculated as:

t′i,j = (ti − t̄i)(tj − t̄j),

where t̄i (resp. t̄j) is the estimated mean computed over all the traces at the
i-th (resp. j-th) sample. There are a total of s(s+ 1)/2 = 980700 possible pairs
(i, j) from s = 1400 samples. This large number will significantly increase the
time and memory cost of the CPA. However, we note that the computation of
the shares of the first round output occurs within a limited time span, making
it unnecessary to consider all possible pairs. To address this, we introduce a
parameter called the window size, denoted w, which estimates the maximum
distance between the leakages of the two shares in the trace t. Thus, for the first
s−w samples (i ∈ [1, s−w]), there are w possible indexes j for each i. For the last
w samples, there are a total of w(w+1)/2 possible pairs of (i, j). Consequently,
the number of samples in the pre-processed trace t′ (i.e., the number of pairs
(i, j)) becomes:

W = (s− w)w +
w(w + 1)

2
= w

(
s− w − 1

2

)
.

To further reduce the number of samples s in t, we make an educated as-
sumption that the S-box computation typically dominates the computation time
in a round. Moreover, the less costly linear diffusion computation (i.e., the at-
tack point) occurs near the end of the round. Based on this insight, we focus on
the last quarter of the samples in each trace. Specifically, we consider the last
350 samples (from 1050 to 1400 in Figure 6b). This reduces the value of s to
350. Additionally, we set the window size to w = 50. With these parameters, the
number of samples in each pre-processed trace becomes W = 16275.

4.3 Optimal number of CPA runs

In the second phase of the attack, the standard CPA, as described in Section 2,
is applied to the pre-processed traces. Since this is a conventional approach,
we omit the details and instead focus on optimizing the number of CPA runs
required for the full key recovery.

Recall that each application of the CPA recovers three bits of k0, indexed by
(j, j+36, j+45), or three bits of k1, indexed by (j, j+3, j+25), where 0 ≤ j ≤ 63
(with additions implicitly modulo 64). To recover the full 128-bit key, the CPA
must be applied multiple times to different tuples of key bit indexes. These tuples
must collectively cover all indexes from 0 to 63 for both k0 and k1. Minimizing
the number of such tuples is crucial to reduce the effort required for the attack.
For example, performing the CPA three times to recover the key bits of k0 at
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the tuples of indexes (0, 36, 45), (19, 55, 0) and (28, 0, 9) (corresponding to j = 0,
j = 19 and j = 28, respectively) results in the bit at index 0 being recovered
three times, which is redundant.

To address this, we investigate the minimum number of index tuples. Weiss-
bart and Picek [26] reported that 30 CPA runs are needed to recover k0 and 33
runs to recover k1, totaling 63 runs. In this work, we formalize the problem as a
set cover problem and solve it using a SAT solver.

Let o0 and o1 be two offsets, (o0, o1) = (36, 45) for k0 and (o0, o1) = (3, 25)
for k1. The problem is stated as follows: given a universe of elements U =
{0, 1, . . . , 63} and a collection of 64 tuples S = {(j, j + o0, j + o1)|j ∈ [0, 63]}
(with additions implicitly modulo 64), find the smallest sub-collection S ′ ⊆ S
whose union covers the universe, i.e. ∪tup∈S′tup = U .

Although the set cover problem is known as NP-hard, it is conceivable that
a solution may be found for problems of smaller scale. To this end, we represent
the problem as a SAT problem. Each tuple tupj = (j, j + o0, j + o1) ∈ S is
represented by a Boolean variable bj , where bj = 1 (true) if tupj ∈ S ′ and
bj = 0 (false) otherwise. To ensure full coverage of the universe, we impose that,
for each n ∈ [0, 63], at least one variable corresponding to the tuples that contains
n should be true, i.e.,

∨
n∈tupj

bj = 1. Additionally, we enforce a cardinality

constraint to limit the number of selected tuples,
∑63

j=0 bj < MAX, where MAX
is a parameter, and the sum is over integers. We transform this constraint into
SAT clauses following [22] and employ the SAT solver CryptoMiniSat8 to find
solutions for various values of MAX. The smallest MAX satisfying the SAT
problem determines the minimum number of CPA runs. The Python script for
this optimization is provided in Section B.

Our results show that only 23 CPA runs are needed for k0 and 24 for k1,
reducing the total to 47 runs. These results are obtained within a few seconds
after executing the Python script. It is worth noting that imposing a smaller
cardinality constraint leads to unsatisfiable problems within seconds. Therefore,
the reported number of CPA runs is optimal.

4.4 Results of key recovery

To efficiently perform the CPA with a large number of traces, we implement
an incremental second-order CPA as introduced by Bottinelli and Bos [5]. This
approach enables to gradually compute Pearson’s correlation coefficients with
a smaller, tunable number of traces instead of processing the entire dataset at
once. Additionally, the trace pre-processing is performed on-the-fly. Recall that
z̃j0 (Equation 7) and z̃j1 (Equation 8) are used to recover the two halves (k0, k1)
of the key, three bits at a time.

Figure 8 shows the results of the second-order CPA for recovering three bits
of k0 using z̃j0 as the selection function. Several peaks corresponding to the
correct key are clearly visible at around sample 2848. Figure 9 illustrates how the
correlation coefficients depend on the number of traces. It can be observed that
8 https://github.com/msoos/cryptominisat

https://github.com/msoos/cryptominisat
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around 100K traces are required for the second-order CPA to reliably distinguish
the correct key from the others.

(a) Full-length correlation traces (b) Zoomed-in view of the peak

Fig. 8: Correlation traces for all key candidates. The calculations use 300K traces.

We present the dependence between the success rate and the number of power
traces for the full key recovery in Figure 10. Since directly measuring the success
rate for the full key recovery is time-consuming, we employ an estimation ap-
proach. Specifically, we measure the success rates of recovering three key bits of
k0 and k1 by performing the CPA 100 times with different index tuples. These
success rates obtained are then raised to the power of 23 and 24, respectively,
reflecting the number of CPA runs needed to recover the full 128-bit key. Mul-
tiplying these two results provide an estimate of the success rate for full key
recovery. As in Figure 10, about 360,000 traces are sufficient to achieve 100%
success for the full key recovery. To validate this estimation, we perform an actual
full key recovery experiment using 360,000 traces. As expected, we succeeded in
recovering the full 128-bit key in about 4.7 hours.

In our second-order CPA, the analysis phase is very efficient as we implement
the incremental computation [5] to process a small number of traces at a time.
For example, if we set this number to 20,000, the computation consumes 0.06 GB
of RAM and takes about 30 seconds. To recover three bits of the key with 100%
success rate, we need to process 360,000 traces, which thus takes 9 minutes,
while the memory cost (0.06 GB) does not change thanks to the incremental
computation. We can run several CPAs on different tuples of key bit recoveries
in parallel to accelerate the process. The most time-consuming phase of the
attack is the collection of the power traces. With a collection speed of 448 traces
per minute, acquiring 360,000 traces requires approximately 13.4 hours to ensure
a 100% success rate.
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Fig. 9: Correlation for all key candidates depending on the number of traces.

Fig. 10: Success rate of the full key recovery.

5 Conclusion and perspectives

In this paper, we investigated various aspects of the CPA attack on (protected)
software implementations of Ascon. We first provided a thorough analysis of the
impact of different approaches for choosing the selection function on the success
of the attack. Building on these insights, we presented the first practical and
successful second-order CPA attack against a masked software implementation.
We demonstrated how the attack can be performed efficiently with modest time
and memory resources. By validating our attach path on the 32-bit ARMv6
masked implementation provided by the Ascon team, we successfully recovered
the full 128-bit key in 4.7 hours using 360,000 power traces. In conclusion, this
work provides a deeper understanding of selection functions in CPA attacks and
a concrete demonstration of their effectiveness against masked implementations.

This work focuses exclusively on 1-bit selection functions. A promising di-
rection for future research is to explore how multi-bit selection functions could
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further reduce the number of traces required for successful attacks, potentially
enhancing the efficiency of CPA attacks against protected implementations.
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A Derivation of selection functions

The j-th bit of y1 and y4 are computed as:

yj1 = nj
0(k

j
1 ⊕ kj0 ⊕ 1)⊕ nj

1 ⊕ kj1k
j
0 ⊕ kj1 ⊕ kj0 ⊕ IVj ,

yj4 = nj
1(k

j
0 ⊕ 1)⊕ nj

0 ⊕ kj0IV
j ⊕ kj0.

In yj1, we remove kj1k
j
0 ⊕ kj1 ⊕ kj0 ⊕ IVj as they contribute a constant amount

to the power consumption. For the same reason, kj0IV
j ⊕ kj0 is removed in yj4.

The fine-tuned versions of yj1 and yj4, denoted by ỹj1 and ỹj4, are:

ỹj1 = nj
0(k

j
01 ⊕ 1)⊕ nj

1,

ỹj4 = nj
1(k

j
0 ⊕ 1)⊕ nj

0,

where kj01 = kj0 ⊕ kj1.
Recall the linear operations applied on the y1 and y4:

z1 = y1 ⊕ (y1 ≫ 61)⊕ (y1 ≫ 39),

z4 = y4 ⊕ (y4 ≫ 7)⊕ (y4 ≫ 41).

The j-th bit of z1 and z4 are thus computed as:

zj1 = yj1 ⊕ yj+3
1 ⊕ yj+25

1 ,

zj4 = yj4 ⊕ yj+57
4 ⊕ yj+23

4 .
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We then apply the linear operations for ỹj1 and ỹj4. The fine-tuned versions
of zj1 and zj4, denoted by z̃j1 and z̃j4, are::

z̃j1 =
(
nj
0(k

j
01 ⊕ 1)⊕ nj

1

)
⊕
(
nj+3
0 (kj+3

01 ⊕ 1)⊕ nj+3
1

)
⊕
(
nj+25
0 (kj+25

01 ⊕ 1)⊕ nj+25
1

)
.

(9)

z̃j4 =
(
nj
1(k

j
0 ⊕ 1)⊕ nj

0

)
⊕
(
nj+57
1 (kj+57

0 ⊕ 1)⊕ nj+57
0

)
⊕
(
nj+23
1 (kj+23

0 ⊕ 1)⊕ nj+23
0

)
.

(10)

B Tuples of indexes for key recovery

1 import pycryptosat as cs
2 import sys
3

4 # Cardinality constraint system proposed by Sinz
5 # sSat: the CNF system used
6 # setId: list of the variable id of the set
7 # nb_sets: number of sets
8 # cc: cardinality constraint
9 # startextra: index of additional variable unused so far , can

be a value large enough
10 # For more details C. Sinz , Towards an Optimal CNF Encoding

of Boolean Cardinality Constraints.
11 def Cardinality_Constraints(sSat ,setId ,nb_sets ,cc,startextra)

:
12 sSat.add_clause ([-( setId [0]), startextra ])
13 for j in range (2,cc+1):
14 sSat.add_clause ([-( startextra+j-1)])
15 for i in range(2,nb_sets):
16 sSat.add_clause ([-( setId[i-1]),
17 startextra +(cc)*(i-1)])
18 sSat.add_clause ([-( startextra +(cc)*(i-2)),
19 startextra +(cc)*(i-1)])
20 for j in range(2,cc+1):
21 sSat.add_clause ([-( setId[i-1]),
22 -(startextra+cc*(i-2)+j-2),
23 startextra +(i-1)*cc+j-1])
24 sSat.add_clause ([-( startextra+cc*(i-2)+j-1),
25 startextra +(i-1)*cc+j-1])
26 sSat.add_clause ([-( setId[i-1]),
27 -(startextra+cc*(i-2)+cc -1)])
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28 sSat.add_clause ([-( setId[nb_sets -1]),
29 -(startextra+cc*(nb_sets -2)+cc -1)])
30 startextra +=( nb_sets -1)*cc
31

32 if __name__ == "__main__":
33 # Arguments
34 # Run ‘python3 64 36 45 23‘ for k0
35 # Run ‘python3 64 3 25 24‘ for k1
36 n = int(sys.argv [1]) # n = 64 indexes
37 s1 = int(sys.argv [2]) # 1st shift
38 s2 = int(sys.argv [3]) # 2nd shift
39 ub = int(sys.argv [4]) # upper bound for number of subsets
40

41 # Compute all subset
42 list_set =[]
43 for i in range(n):
44 list_set.append ([i,(i+s1)%n,(i+s2)%n])
45

46 # Save the universe
47 universe=list(range(n))
48

49 # Create the solver object
50 sSat=cs.Solver ()
51

52 # Add constraint
53 # For each element of the universe , we should select at

least one subset containing the element
54 for i in universe:
55 # create an empty disjuction
56 clause_presence =[]
57 for j in list_set:
58 # if subset j contains the element i, we add the

variable corresponding to the set j to the disjunctions
59 if i in j:
60 clause_presence += [list_set.index(j)+1]
61 # One variable in clause_presence must be set to true
62 # Add disjunction to the conjunction
63 sSat.add_clause(clause_presence)
64

65 # Cardinality constraints
66 Cardinality_Constraints(sSat ,
67 list(range(1,len(list_set)+1)),
68 len(list_set),
69 ub ,
70 len(list_set)+1)
71

72 # solve it
73 satq ,solution=sSat.solve ()
74 # SAT or UNSAT
75 print(satq)
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76 # if SAT print the solution
77 if(satq):
78 # for all variable corresponding to a subset
79 for i in range(1,len(list_set)+1):
80 # if True then the subset has been selected
81 if solution[i]:
82 print(list_set[i-1])
83 # else the subset has not been selected each

element of this subset should appear in at least one
other selected subset

Listing 1.1: Python script to find the minimum number of tuples.

23 tuples for k0 24 tuples for k1
(j, j + 36, j + 45) (j, j + 3, j + 25)

( 1,37,46) (29, 1,10) ( 3, 6,28) (34,37,59)
( 2,38,47) (32, 4,13) ( 5, 8,30) (39,42, 0)
( 5,41,50) (35, 7,16) ( 6, 9,31) (41,44, 2)
( 8,44,53) (39,11,20) ( 7,10,32) (43,46, 4)
(11,47,56) (42,14,23) (13,16,38) (45,48, 6)
(12,48,57) (45,17,26) (15,18,40) (50,53,11)
(15,51,60) (49,21,30) (17,20,42) (51,54,12)
(18,54,63) (52,24,33) (22,25,47) (52,55,13)
(19,55, 0) (55,27,36) (24,27,49) (53,56,14)
(22,58, 3) (59,31,40) (26,29,51) (58,61,19)
(25,61, 6) (62,34,43) (32,35,57) (60,63,21)
(28, 0, 9) (33,36,58) (62, 1,23)

Table 6: Tuples of indexes for each 3-bit key recovery. The number of tuples
should be minimized while the range from 0 to 63 must be covered.

C Impact of linear layer in selection function

1 x0 = x0 ^ x4
2 x4 = x4 ^ x3 // n0 ^ n1 (in the first round)
3 x2 = x2 ^ x1
4 // Start of keccak S-box
5 t0 = x0 ^ (~x1 & x2)
6 t1 = x1 ^ (~x2 & x3)
7 t2 = x2 ^ (~x3 & x4)
8 t3 = x3 ^ (~x4 & x0)
9 t4 = x4 ^ (~x0 & x1)

10 // End of keccak S-box
11 y0 = t0 ^ t4
12 y1 = t1 ^ t0
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13 y2 = ~t2
14 y3 = t3 ^ t2
15 y4 = t4

Listing 1.2: C implementation of Ascon S-box.
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