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Abstract. HuFu is an unstructured lattice-based signature scheme pro-
posed during the NIST PQC standardization process. In this work, we
present a side-channel analysis of HuFu’s reference implementation.
We first exploit the multiplications involving its two main secret matri-
ces, recovering approximately half of their entries through a non-profiled
power analysis with a few hundred traces. Using these coefficients, we re-
duce the dimension of the underlying LWE problem, enabling full secret
key recovery with calls to a small block-sized BKZ.
To mitigate this attack, we propose a countermeasure that replaces sen-
sitive computations involving a secret matrix with equivalent operations
derived solely from public elements, eliminating approximately half of
the identified leakage and rendering the attack unfeasible.
Finally, we perform a non-profiled power analysis targeting HuFu’s Gaus-
sian sampling procedure, recovering around 75% of the remaining secret
matrix’s entries in a few hundred traces. While full key recovery remains
computationally intensive, we demonstrate that partial knowledge of the
secret significantly improves the efficiency of signature forgery.

1 Introduction

Unstructured lattices vs. Structured lattices. Lattice-based cryptography
has become a cornerstone of post-quantum cryptography, offering strong protec-
tion against both classical and quantum adversaries. Its security is rooted in the
hardness of well-studied mathematical problems, such as the Short Integer So-
lution (SIS) [Ajt96] and Learning With Errors (LWE) [Reg05] problems, which
remain difficult even for quantum computers.

Algebraic variants of these problems allow for more efficient implementations
and shorter key sizes in cryptographic primitives like Key Exchange Mecha-
nisms (KEMs) and signature schemes. Notable examples include the standard-
ized ML-KEM [NIS24b] and ML-DSA [NIS24a]. However, these structured vari-



ants introduce additional algebraic properties that can be exploited by adver-
saries. For example, attacks on Ideal-SVP provide improvements over generic at-
tacks [CDW17,PHS19,BR20,BLNR22]. While no comparable attacks have been
identified for “Module” variants, a direct reduction from generic problems has
not been established.

In contrast, primitives based on unstructured lattices, though less efficient
and compact, provide more conservative security guarantees. Studying these un-
structured schemes provides valuable insight into the trade-offs between struc-
tured and unstructured lattices, offering a clearer understanding of their respec-
tive strengths and vulnerabilities.

Side-Channel Analysis. In both its structured and unstructured variants,
lattice-based cryptography is often technical to implement and manipulates a
lot of secret dependent variables. These variables are a perfect target for side-
channel attacks (SCA), which exploit information leakages through physical data
captured during the execution of the algorithm on a device. Nowadays it is the
main threat to cryptographic algorithms and should be taken into account in the
design phase of any modern algorithm. Indeed, while generic protections against
SCA exist, they come at a non-negligible cost, which could most of the time
be lowered by carefully choosing the operations performed by the algorithm.
However, while being devastating on most implementations, exploiting leakage
information to mount an effective cryptanalysis is often not straightforward.

The HuFu Signature Scheme. In this work, we propose to further explore
SCA against unstructured schemes by targeting HuFu. The HuFu [YJL+23]
signature scheme is a concrete instance of the GPV [GPV08] hash-and-sign
framework, built upon the MP12 [MP12] trapdoor construction and the Peikert
Gaussian sampler [Pei10]. It was a candidate in the first round of the additional
signature track of the NIST PQC standardization process. Its security relies on
the hardness of unstructured lattice problems, which makes it a more conserva-
tive choice security-wise compared to schemes like the NIST-standardized ML-
DSA, which rely on module lattice problems. The MP12 trapdoor construction
facilitates the creation of lattices with a good basis (serving as the secret key)
and a bad basis (serving as the public key). The Peikert sampler then utilizes
the good basis to efficiently generate Gaussian samples from the lattice, ensuring
these points lie relatively close to any specified target point in the ambient space.

Although HuFu is a signature scheme, its underlying building blocks and
their implementation have applications that extend well beyond digital signa-
tures. The MP12 trapdoor construction forms the backbone of advanced crypto-
graphic schemes, such as identity-based encryption as demonstrated in [ABB10],
group signatures [dPLS18], anonymous credentials [JRS23], blind signatures
[JS24]. On the other hand, the Peikert Gaussian sampler serves as a funda-
mental component in a wide variety of trapdoor-based lattice applications. Con-
sequently, analyzing the side-channel vulnerabilities of HuFu offers valuable
insights into the broader field of lattice-based cryptography.
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HuFu was submitted to NIST’s additional round of signature schemes but
was cut from the competition from Round 2 onward. Issues about the signature
encoding were raised1 but quickly patched by the HuFu team.

Related Works. With the NIST standardization process coming to an end,
significant attention has been given to implementation issues in lattice-based
cryptography. Similar to this work, sign and zero values are common targets
in horizontal attacks, as seen in [GMRR22,ZLYW23,LZY+25] for Falcon, in
[KAA21,BVC+23] for ML-DSA, in [BVCV24] for ML-KEM, and in [GR24] for
the more recent Hawk scheme. Exploiting such partial knowledge requires an ad-
ditional cryptanalysis step, and a generic framework for evaluating the remaining
strength of cryptosystems in the presence of side-channel hints was introduced
in [DDGR20] and later improved in [DGHK23,MN23]. However, side-channel at-
tacks on lattice-based schemes typically leverage their algebraic structure, mak-
ing them difficult to extend to unstructured lattices. Nonetheless, such attacks
on unstructured lattice schemes, though less common, do exist, notably against
FrodoKEM [KH18,BFM+18].

1.1 Contributions

Our contributions consist of two attack paths (key recovery and signature for-
gery) involving side-channel analysis and lattice reduction. These attacks are
illustrated in Figure 1 and can be summarized as follows2:

Side-Channel Analysis of HuFu. We present in Section 3 a non-profiled
power analysis attack on the HuFu signature scheme. This attack targets the
multiplications between the secret matrices S, E, and the ephemeral vector z.
Using this method, we successfully recover almost all coefficients in S and E that
are equal to 0.

Key Recovery. By leveraging the recovered zero coefficients in both S and E,
we achieve full secret key recovery in Section 4. Each column of S corresponds
to a secret vector s in an LWE instance of the form Âs + e, where e is the
corresponding column of E. By mapping known coefficients in s or e to lower-
dimensional hyperplanes containing the LWE solution, we iteratively intersect
the ambient lattice with these hyperplanes. This reduces the dimension of the
unknown part of s until it becomes solvable via lattice reduction.

Partial Countermeasure and Enhanced SCA. We propose in Section 5 a
simple countermeasure to eliminate leakage from the secret matrix E. Conse-
quently, we only have partial information about S, preventing us from reproduc-
ing the initial attack that relied on coefficients from both S and E. In response,
we develop a deeper side-channel attack targeting the ephemeral vector z, en-
abling us to recover additional coefficients in S.
1 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU/m/
iLZctTiLAgAJ

2 All our code is available here: https://github.com/mB64s53wFvP7637M/KF7ns9y5bf
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Signature Forgery. Using the previous key recovery attack to reconstruct a
subset of the columns of S, we demonstrate in Section 6 how this knowledge
weakens the forgery security of the scheme, up to a breaking point.

Broader Applicability. Although our attacks are demonstrated on HuFu, the
side-channel techniques apply to any matrix-vector multiplication implemented
similarly to the HuFu reference code, where the matrix is a long-term secret
with many zero entries and the vector is a (Gaussian) ephemeral secret. This
is particularly relevant in lattice-based constructions using the [MP12] strategy
(e.g., [DM14,CGM19,YJW23]) to sample Gaussian (inhomogeneous) SIS solu-
tions for a public matrix A. Specifically, this applies when leveraging a trapdoor
for Λ⊥(G) := {z ∈ Zm |Gz = 0}, where G = A[RI ] for a small entries long-
term secret matrix R, by sampling a Gaussian z from Λ⊥(G) and computing
x = [RI ]z+ p, with p ensuring a spherical Gaussian distribution on Λ⊥(A).
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(a) Successful full key recovery attack leveraging recovered coefficients of S and E (in
red) via SCA, followed by completion using lattice reduction.
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(b) Successful forgery attack leveraging recovered coefficients of S (in red) via SCA,
even when coefficients of E remain unrecovered. Blue entries in z represent coefficients
whose signs are identified through SCA.

Fig. 1: Our two attack scenarios: key recovery (a) and signature forgery (b).
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2 Preliminaries

Matrices are denoted by bold uppercase letters (e.g., A), while vectors are rep-
resented by bold lowercase letters (e.g., x). For a vector x, let xi denote its i-th
component. For a matrix A, let Ai,j refer to the entry in the i-th row and j-th
column. The notation 0m×n represents the m× n zero matrix, and 0m denotes
the m-dimensional zero vector.

In this work, all modular reductions are centered. Namely, the modular re-
duction · mod p maps Z to the interval [−p

2 ,
p
2 )∩Z. For any x ∈ R, let ⌈x⌋ denote

the nearest integer to x, with this notation extended component-wise to vectors.
Note that for any x ∈ Z and p ∈ N, ⌈x/p⌋ = (x− (x mod p))/p.

A lattice Λ ⊂ Rn is defined as a discrete subgroup of Rn. Its covolume Vol(Λ)
is the norm of the determinant of any of its bases. The n-dimensional Gaussian
function ρ : Rn → (0, 1] is given by ρ(x) := exp(−π∥x∥2). For a positive definite
matrix Σ = BBt, we can apply the invertible linear transformation B to define a
Gaussian function ρΣ(x) := ρ(B−1x) = exp(−πxtΣ−1x). For any c ∈ span(Σ),
the Gaussian function centered at c with parameter Σ is defined as ρΣ,c(x) :=
ρΣ(x − c). The discrete Gaussian distribution centered at c with parameter Σ

over a lattice Λ has probability mass function DΛ,Σ,c(x) :=
ρΣ,c(x)
ρΣ,c(Λ) for all x ∈ Λ,

where ρΣ,c(Λ) =
∑

x∈Λ ρΣ,c(x). Similarly, the discrete Gaussian distribution on
a lattice coset Λ+v, where v ∈ span(Λ), is defined as DΛ+v,Σ,c(x) :=

ρΣ,c(x)
ρΣ,c(Λ+v)

for all x ∈ Λ+ v. For any positive ε > 0, the smoothing parameter ηε(Λ) is the
smallest s > 0 such that ρ(s·Λ∗) ≤ 1+ε, where Λ∗ := {x ∈ span(Λ) | ⟨x, Λ⟩ ⊆ Z}
is the dual lattice of Λ.

For any set S, we use the notation U(S) for the uniform distribution over S.
We let B1 be the centered binomial distribution with parameter 1, i.e. the
distribution with mass probability p(−1) = p(1) = 1/4 and p(0) = 1/2. We
let X ←$ P denote that the random variable X follows the distribution P .

2.1 Learning With Errors

Problem Description. The Learning With Errors (LWE) problem involves
recovering a secret vector s ∈ Zn

Q given a matrix A ∈ Zm×n
Q and a vector

b ∈ Zm
Q , satisfying the relation b = As + e mod Q, where e ∈ Zm

Q is a short
error vector with entries sampled independently from an error distribution χ.
While in its original formulation [Reg05], the secret vector is assumed to be
uniformly sampled at random, it is usually sampled from the error distribution,
as [ACPS09] proved that this was not weakening the problem.

BKZ. To find a short vector in a d-dimensional lattice Λ, one typically uses the
BKZ algorithm [SE94], which is parameterized by its block size β. BKZ with
block size d > β > 50 finds a vector v ∈ Λ such that:

∥v∥ ≤ δdβ ·Vol(Λ)1/d and δβ ≈
(
(πβ)1/ββ

2πe

)1/(2(β−1))

.
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Estimating the cost of BKZ with block size β is not a trivial task. The
Core-SVP methodology considers that its cost is essentially the one of the β-
dimensional SVP oracle that is used in BKZ and overlooks the polynomial over-
heads of the algorithm. Currently, the best classical algorithm known to solve
SVP in dimension β was designed in [BDGL16] and has bit-cost 0.292β.

On the more practical side, the number of core-hours from G6K [ADH+19]
are a good indicator of the cost of BKZ, as it holds records in high-dimension
(i.e. up to 120) SVP-solving.

Primal Attack. Attacking an LWE instance typically involves two primary
strategies: the dual attack, which involves solving a Short Integer Solution (SIS)
instance, and the primal attack. The latter [ADPS16] is the most fundamental
approach to solving the LWE problem. It interprets the LWE instance as a
Bounded Distance Decoding (BDD) instance, where the goal is to find the closest
vector to b in the lattice:

ΛQ = {y ∈ Zm : y = As mod Q, s ∈ Zn}.

When the secret is sampled from the same distribution as the error, this ap-
proach is reduced to solving the unique Shortest Vector Problem (uSVP) instance
defined on the following Q-ary lattice of dimension m+ n+ 1:

LLWE =

 QIm −A b
0 In 0
0 0 1

 · Zm+n+1,

using Kannan’s embedding [Kan87] with an embedding factor of 1. This lattice
has covolume Qm and contains a remarkably short vector u with norm:

∥u∥ =
√
∥e∥2 + ∥s∥2 + 1.

In the case of the primal attack, it was shown [ADPS16] that it succeeds
when the block size β is such that for some non-negative integer ℓ ≤ m:√

3β

4(ℓ+ n+ 1)
∥s, e, 1∥· ≤ δ

2β−(ℓ+n+1)−1
β ·Qℓ/(ℓ+n+1),

where the
√

3/4 is a conservative choice, as estimated per [Duc18].

Approximate-CVP. For any matrix A ∈ Zm×2m+n
Q and vector u ∈ Zm

Q , the
nearest-colattice algorithm [EK20] finds a vector x such that Ax = u mod Q
and ∥x∥ ≤ Bβ by calling BKZ with block size β, where:

Bβ = min
k≤m+n

(
δ2m+n−k
β ·Qm/(2m+n−k)

)
.
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2.2 HuFu

The HuFu signature scheme was introduced in [YJL+23] and is based on the
Hash-and-Sign paradigm. This consists for lattice-based signatures in exhibiting
a preimage by the trapdoored public matrix A of the target H(µ) = u ∈ Zm

Q

as a signature for the message µ. The shorter the preimage is, the better the
security, as there are less admissible preimages.

However, the distribution of the preimage is critical, as bad choices may
leak the signing key, i.e. the trapdoor stored in A. Here, HuFu relies on the
approximate preimage sampling technique from [YJW23].

Algorithms for key generation, signature and verification and HuFu-1 param-
eters are recalled in Figure 2. Since our analysis does not target the BlockCholesky
algorithm or the compression and encoding steps, we omit their description
here. For complete explanations, we refer readers to the original HuFu spec-
ification [YJL+23].

Going into more details, the HuFu signature scheme is parameterized by
modulus Q = pq, where p is a large power of 2 and q is a small power of 2. The
key generation algorithm generates m plain LWE samples ÂS+E mod Q with
secret and noise coefficients each sampled from B1. The final public matrix A
is (Idm|Â|pIdm − ÂS−E).

KeyGen(1λ)

1 : Â←$ Zm×n
Q

2 : repeat

3 : (S,E)←$ Bn×m
1 ×Bm×m

1

4 : Σp ← σ2In+2m − r2 ·
[

E
S
Im

]
·
[
Et St Im

]
5 : until Σp − r̄2In+2m is positive definite
6 : B← pIm − (ÂS+E) mod Q

7 : C← BlockCholesky(Σp − r̄2In+2m)

8 : return vk = (Â,B), sk = (E,S,C)

Verify(vk, µ, σ)

1 : u← H(µ, salt)

2 : x′
0 ← u− Âx1 −Bx2 mod Q

3 : if ∥(x′
0,x1,x2)∥ ≤ B

4 : Accept
5 : else
6 : Reject

Sign(sk, µ)

1 : A←
[
Im Â B

]
2 : p← SampleP(sk)
3 : (p0,p1,p2)← p
4 : c← Ap mod Q

5 : salt←$ {0, 1}320

6 : u← H(µ, salt)
7 : v← u− c mod Q
8 : e← v mod p
9 : v′ ← (v − e)/p

10 : for i = 1, . . . ,m
11 : zi ← q · SampleZd(v

′
i/q)

12 : x0 ← Ez+ p0

13 : x1 ← Sz+ p1

14 : x2 ← z+ p2

15 : if ∥(x0 + e,x1,x2)∥ > B
16 : goto 2
17 : return σ = (salt,x1,x2)

Fig. 2: Simplified pseudocode of HuFu. HuFu-1 uses (m,n) = (736, 848),
(p, q) = (212, 24) and B = 62521.
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A HuFu signature is a preimage of pv′ = p⌊u/p⌉, where u ∈ Zm
Q is the target:

as A contains the identity matrix, this is equivalent to sampling a somewhat
larger preimage of u. This is achieved by choosing a short element z ∈ qZm+v′.
The signature is then (Ez,Sz, z), which is still short and is a preimage of v′.
The first coordinate Ez is omitted from the signature, as it can be reconstructed
as u−Â(Sz)−Bz. As it stands this signature leaks the secret matrices S and E.

To solve this issue, the signer starts by sampling p, and updates the target
to v = u−Ap mod Q. The signature is (Ez,Sz, z) + p, which is indeed a short
preimage by A of u. Once again, the first m coordinates are erased as they can
be approximately recovered by the verifier.

A careful choice of the distributions of z and p makes it so that the fi-
nal distribution of the signature is independent of the secret. This choice is
the discrete Gaussian distribution: let DqZm+v′,r be the output distribution
of (q ·SampleZd(v

′
i/q))i and DZ2m+n,Σp

be the output distribution of SampleP for
some r > 0 and some positive-definite matrix Σp. Conditioned on r̄ > qηε(Z),
the distribution of the signature is ε-close to a discrete Gaussian distribution
centered around 0 with covariance matrix: Σ = Σp + r2S⊤

0 S0 = σ2Id2m+n,
where S0 = (E⊤,S⊤, Idm) and by choosing Σp accordingly.

The following result is a well-known fact, but we include a brief proof for
completeness in Section A:

Lemma 2.1. Let Q be a power of 2 and m < n be integers, and let Â ←$

U(Zm×n
Q ). For 0 ≤ k2 < n and 0 < k1 < n−k2, any k1-row and (n−k2)-column

submatrix of Â contains an invertible submatrix Âsub ∈ Zk1×k1

Q with probability:

pk1 =

k1∏
i=1

(
1− 2i−1−(n−k2)

)
.

3 Exploiting 0 leakage

The goal of this section is to recover partial information via side-channel analysis
on the private matrices S and E, which we exploit in a key recovery and a
signature forgery in the following sections. Namely we look for the location of
the coefficients whose value is equal to zero, which we dub the “0 leakage”.

Targeted Operations. We target the multiplications E ·z and S ·z at Lines 12
and 13 of the signature procedure described in Figure 2. S and E are long-term
secrets while z is an ephemeral secret vector. Hence, we are not in a classical
setting for a DPA, as none of the operands is known by the attacker. From a
side-channel point of view, the operations involving either S or E are similar and
we will only describe the recovery of S for conciseness. The targeted C code is
shown in Listing 1, taken from the official HuFu submission package.

Experimental Setup. The power traces have been recorded with a ChipWhis-
perer Lite with STM32F303 target (ARM Cortex M4). Due to limitations of
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our acquisition device, we executed the mat_mul code with matrices of smaller
dimensions 8x8. However, we expect the attack to behave similarly in higher
dimensions, as the traces will have identical patterns and point of leakages, and
will only be longer with more individual multiplications involved. To validate
the feasibility of our attack, we generated 100 datasets of 1500 power traces
each. After performing the attack on each dataset separately, we aggregated the
results of the 6400 coefficients on Figure 8.� �

1 void mat_mul(int16_t *C, int16_t *A, int16_t *B, int l1,
int l2, int l3)

2 {
3 for (int i = 0; i < l1; ++i)
4 for (int j = 0; j < l3; ++j)
5 {
6 mat_element(C, l3, i, j) = 0;
7 for (int k = 0; k < l2; ++k)
8 mat_element(C, l3, i, j) += mat_element(A, l2, i,

k) * mat_element(B, l3 , k, j);
9 }

10 }
 	
Listing 1: Reference C code of matrix-vector multiplication.

Fig. 3: Extract of power consumption during Listing 1 execution for l2 = 8.

Overview. The multiplication between S and z consists in n ·m multiplications
and additions of single coefficients Si,j and zi. Figure 3 shows an extract of the
power consumption during the multiplication between S and z. The red line
separates two multiplications between lines of S and z, while the blue lines
separate multiplications between single coefficients Si,j and zi.

We exploit in our attack that S is ternary, i.e. the only possible values for its
coefficients are {−1, 0, 1}. Consequently, multiplication between Si,j and zi for
some i, j can only result in three different cases:

1. 0, setting the Hamming weight to 0.
2. zi, keeping the Hamming weight identical.
3. −zi, greatly changing the Hamming weight.

9



We expect to see the above classification in the power consumption. In par-
ticular, Si,j = 0 will always result in a Hamming weight of 0. For a non-zero Si,j ,
we expect to see the power traces split into two groups, depending on the sign
of Si,j · zi. Those assumptions are confirmed by experimental analysis, as shown
in Figure 4a and Figure 4b: a difference can be noted between samples 420-425
and samples 350-355. As we have no way to distinguish between the Cases 2 and
3, we focus on identifying only the Case 1 corresponding to Si,j = 0.

(a) Si,j = 0. (b) Si,j ̸= 0.

Fig. 4: Power consumption during the computation of Si,j · zi.

Practical Attack. The goal is to determine whether the power traces at the
selected points of interest are forming one or two clusters. To this end, we use the
Kernel Density Estimator (KDE) from the Python package sickit-learn. To
improve accuracy, we separated the power traces into 10 subsets and performed a
majority voting to determine the final classification. Since we are only interested
in finding the zero coefficients, we can choose conservative parameters for our
KDE to drastically decrease the number of false positives.

Results. An extract of the results is shown on Table 1 (full results will be
discussed in Section 5.3). From as few as 200 power traces, we are able to recover
more than 90% of the Si,j = 0. However, we must increase the number of traces
to at least 600 to avoid any false positives, at which point we also get an accuracy
of 97%. The results do not get much better with an increasing number of traces,
and they remain steady around 98% up to 1500 power traces. By extension, we
can also recover the same proportion of the Ei,j = 0.

4 Key Completion via Lattice Reduction

In this section, we exploit the side-channel information from Section 3 to recover
the secret matrix S. We focus on individual LWE instances Âs+ e = b mod Q,
each corresponding to a single column of the matrices S, E, and pIm − B, as
defined in Section 2.2 and target them separately. The challenge of leveraging
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Table 1: Percentage of Si,j = 0 successfully recovered.

Number of traces Recovered Si,j = 0 False positives

200 93.4% 0.12%
600 97.9% 0%
1500 98.5% 0%

partial information about the error or secret in LWE has been explored through
various methods, as discussed in [DDGR20], [DGHK23], and [MN23]. In this
work, we focus on the approach proposed in [MN23], which offers a framework
particularly well-suited to tackling the specific challenges present in our context.

4.1 Partial Knowledge of the Secret

By utilizing side-channel information, we gain access to certain entries of S.
Building on this partial knowledge, we aim to recover individual columns s of S,
paving the way for a (partial) key recovery attack. To achieve this, we replace
the k known coefficients of s in the LWE system, thereby reducing the number
of unknowns by k.

Let s̃ represent the partially known vector s, defined as:

s̃i =

{
si if the i-th component is known,
0 otherwise.

Note that, in the context of Section 3, s̃ is an all-zero vector due to the spe-
cific leakage model considered. However, we later consider cases where some
nonzero si are known. Substituting s̃ into the LWE relation gives:

Âs+ e = b mod Q ⇐⇒ Â(s− s̃) + e = b− Âs̃ mod Q.

Assume that k coordinates of s have been leaked. This simplifies the original
LWE instance by removing corresponding columns and entries, leading to the
reduced instance (A′, s′, e,b′), where:

• A′ is derived by removing the k columns from Â,
• s′ consists of the remaining coordinates of s− s̃ after excluding the k-0, and
• b′ is b− Âs̃.

This modification decreases the lattice problem’s dimension by k, thereby
weakening its security. However, relying solely on this method requires know-
ledge of a significant portion of s to render the attack practical (e.g., reducing
dimensions below 200). Considering that the LWE error e also leaks information,
a natural question emerges: Can we further reduce the LWE instance dimension
by exploiting partial knowledge of e alongside s?
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4.2 Partial Knowledge of the Error

Knowing a coefficient of the error vector e reduces the dimension of the LWE
solution by one, similar to knowing a coefficient of the secret vector s. The core
idea is that knowing one coordinate of e allows us to derive a linear combination
of the components of s. Specifically:

bi − ei =
∑
j

âi,j · sj mod Q.

Since Â is sampled uniformly, its rows form a linearly independent generating
system with high probability. Consequently, this relation reduces the dimension
of the system induced by the LWE instance by one. More generally, knowing k
such relations reduces the dimension by k.

Assuming that the first k coordinates of e are known (possibly after reorder-
ing), the LWE equation can be reformulated as:

(Â | b) · (s⊤,−1)⊤ = (−e1,−e2)⊤ mod Q,

where e1 = (e1, . . . , ek) and e2 = (ek+1, . . . , em). Given that Â, b, and s can be
decomposed (possibly after permuting columns) as:

(Â | b) =
(
A1 A2 b1

A3 A4 b2

)
, and s = (s1 | s2)⊤,

where A1 ∈ Zk×k
Q is invertible with overwhelming probability, see Lemma 2.1.

We can apply Gaussian elimination to the first k rows, transforming the system
to the equivalent form:(

Ik A−1
1 A2 A−1

1 (b1 − e1)
A3 A4 −b2

)
· (s1 | s2 | − 1)⊤ = (0k,−e2)⊤ mod Q.

By applying additional row operations to eliminate A3, the system simplifies to:(
Ik A−1

1 A2 A−1
1 (b1 − e1)

0(m−k)×k Ā b̄

)
· (s1 | s2 | − 1)⊤ = (0k,−e2)⊤ mod Q,

where:
Ā = A4 −A3A

−1
1 A2, and b̄ = A3A

−1
1 (e1 − b1)− b2.

The values of s1 can be determined from the first k equations, leading to a
new LWE instance with reduced dimension (n−k) and parameters (Ā, s2, e2, b̄).
Notably, both methods of exploiting known coordinates of s and e are specific
instances of incorporating mod-Q hints, as outlined in [MN23].

4.3 Combining Insights from Secret and Error

We assume that 0 ≤ k1 ≤ n coordinates of the secret vector s and 0 ≤ k2 ≤ m
coordinates of the error vector e are known. For the system’s dimension to be
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reduced by exactly k1 + k2, the linear combinations defining the leakage on s
must remain linearly independent.

Let Âsub ∈ Zk2×n
Q represent the submatrix corresponding to the leaked coor-

dinates of e. If Âsub maintains rank k1 after excluding k2 columns related to the
leaked coordinates of s, the resulting LWE instance will have the desired reduced
dimension. This condition holds with high probability, as shown in Lemma 2.1.

For the general case 0 ≤ k2 < m and 0 ≤ k1 < n− k2, we refer to Figure 5,
generated using the leaky-estimator from [DDGR20], to determine the BKZ
block size needed to recover an entire column of S.
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Fig. 5: Estimated evolution of the BKZ block size β as a function of the number
of recovered coefficients of s and e for HuFu-1 with (n,Q, χ) = (848, 216, B1).

When k1 + k2 ≥ n, lattice reduction becomes unnecessary. Gaussian elimi-
nation can recover the secret, with the caveat that ZQ is not a field.

4.4 Key Recovery with 0 Leakage

In HuFu, the LWE secrets and errors (S,E) are independently and identically
distributed according to a centered binomial distribution with parameter 1.
Therefore, on average, each column s of S contains n/2 zeros, and each col-
umn e of E contains m/2 zeros. By the law of large numbers, for large n and m,
this is the case for all considered samples.

Secret Only. Based on Table 1, recovering more than 95% of the zeros in S with
100% accuracy requires 600 power traces. For HuFu-1, this is approximately 400
coefficients per column of S. Completing the remaining coefficients necessitates
BKZ with a block size around 200. Consequently, recovering the full HuFu secret
key would require over 277 operations, making the attack unfeasible.

Error-Secret Combined. However, Recall that the attack in Section 3 applies
to E as well. By exploiting leakage from both S and E, we can recover approx-
imately 0.95 · (n +m)/2 coefficients per LWE instance, compared to 0.95 · n/2
when using S alone.
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Using the same number of power traces for HuFu-1, this approach yields
approximately 740 coefficients of (s, e). Consequently, the required BKZ block
size reduces to 10, lowering the time complexity for full key recovery to roughly
225, which is computationally feasible within a reasonable time frame.

5 Trading 0 leakage on E for more-than-0 leakage on S

While devastating, the combined attack from Section 4 requires knowledge on
both S and E. We now show how to get rid of the leakage on E.

5.1 First Countermeasure: Preventing the Leakage on E

We note that the computation x0 = Ez+ p0 is only ever useful to compute the
norm of (x0 + e,x1,x2). However, the vector x0 + e can also be expressed as

u− Âx1 −Bx2.

Computing it this way prevents leakage on E here. Note that the computation of
x0 is only there to ensure correctness and is not sensitive, as rejected signatures
do not reveal any information on the private key.

Performance cost. The countermeasure involves an additional matrix-vector
multiplication and and additional vector addition. We noticed an overhead in
signature generation of around 5% in terms of CPU cycles on Intel architecture.

If we apply this simple countermeasure, an attacker is not able to recover
information on the private matrix E anymore. As shown in Section 4.4, a lattice
reduction with only the zero-coefficients of S is likely to be too costly. Hence,
the goal of this section is to perform a deeper side-channel analysis to recover
more information on S. We do so in two steps.

1. Target the Gaussian sampler to gain information on the sampled vector z.
2. Use this additional information to distinguish between the Si,j = ±1.

5.2 Side-channel Analysis of the Gaussian Sampler

Contrary to the CDT samplers of similar schemes Falcon and Hawk that have
been analyzed in [GMRR22,ZLYW23,GR24], the distribution table of the HuFu
sampler is designed to sample both negative and positive integers. This means
that, for a sample of value 0, the inner counter will have been incremented during
half of the table traversal, whereas it would not have been incremented at all in
more traditional samplers. As the noise on the power traces grows bigger during
the execution, recovering the zi that are close to 0 without profiling proves much
more challenging in this sampler than in the ones listed earlier. For this reason,
we will not target the table traversal but rather the lines 15 and 2 in Listing 2.
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� �
1 int c = center;
2 c = (c > 8) * (16 - 2 * c) + c;
3 z = 0;
4 for (u = 0; u < TABLE_LEN; u += 3)
5 {
6 uint32_t w0 , w1, w2, cc;
7 w0 = dist0[c][u + 2];
8 w1 = dist0[c][u + 1];
9 w2 = dist0[c][u + 0];

10 cc = (v0 - w0) >> 31;
11 cc = (v1 - w1 - cc) >> 31;
12 cc = (v2 - w2 - cc) >> 31;
13 z += (int)cc;
14 }
15 return (center > 8) * (27 - 2 * z) + z - 13;
 	

Listing 2: Extract of the RCDT sampler used in the online phase.

Sign Recovery. The last operation executed at Line 15 is the subtraction
between an intermediary value and 13. This is done to center the Gaussian
sampler around 0 and output a sample in [−12, 12]. Let:

zCDT = (27− 2 · z) + z − 13 = 14− z

be the final value outputted by the sampler. If the result of the final subtraction
is negative, i.e. zCDT < 0, it induces a spike in power consumption as shown on
Figure 6c, that is visible with bare-eyes and is detected with a simple threshold.

Identifying Zeros. The multiplication step (center > 8) * (27 - 2 * z)
shows a similar leakage. However, it only reveals the sign of 27 - 2 * z if
center is greater than 8. Otherwise, the intermediary result targeted here will
be 0 independently of the value of z. We then know when 27−2z < 0, i.e. z > 13.
From last paragraph, we also know when zCDT ≥ 0, i.e. z ≤ 14. Hence, we isolate
the case z = 14, i.e. zCDT = 0. We thus identify the zCDT that are zero when
center is greater than 8, which happens with probability 0.5.

Leakage on center. Now we need to gain information on the center variable.
As shown on Figure 6a, power consumption reveals whether the intermediary
result 16− 2 · c at Line 2 is negative, implying that center is greater than 8. A
simple threshold can be used to separate the power traces into two groups.

Results. We generated a dataset of 100,000 executions of the sampler. We were
able to recover with 100% accuracy:

• for each execution, if zCDT is negative or not,
• for each execution, whether center is greater than 8,
• for executions where center > 8, if zCDT is 0.
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The final value zi is computed as zi = Q · zCDT − c with c < Q. Thus,
while zCDT < 0 =⇒ zi < 0, the converse is not true. We discard any zCDT such
that zCDT ≥ 0∧ c ≤ 8 as the sign of the corresponding zi cannot be determined
with certainty. Experimentally, we can keep around 63% of the zi. Note that
when we cannot determine the sign of some zi, we do not discard the complete
power trace as there may be other interesting values in the vector z. We simply
ignore this particular index i.

(a) Computation of c. (b) First multiplication. (c) Final subtraction.

Fig. 6: Power traces corresponding to negative (resp. non-negative) intermediary
results are shown in blue (resp. red).

5.3 Recovering the Sign of Si,j

With the knowledge of the sign of zi, we can further analyze the power traces
from Section 3 to distinguish between the 1 and -1 coefficients of S. As described
in Section 3, the power traces can be split into two groups when Si,j is non-zero.
Those two groups depends on the sign of Si,j · zi, hence on the sign of zi for a
fixed Si,j . The power traces can thus be grouped depending on the sign of zi.

(a) Si,j = −1. (b) Si,j = 1.

Fig. 7: Power traces in red (resp. blue) correspond to zi < 0 (resp. zi > 0).
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As we can see on Figure 7a and Figure 7b, the relative position of those two
groups is inverted depending on the value of Si,j : if Si,j = −1, the power traces
corresponding to zi < 0 will be positioned above the power traces corresponding
to zi > 0, and conversely for the Si,j = 1.

Note that the special case where zi = 0 is a blind spot of the classification
detailed in Section 3. Indeed, the Hamming weight of the result will be set to 0
whatever the value of Si,j . Thus, such zi will not help us distinguish between ±1
and may even induce some errors. However, this happens only when zCDT = 0
and c ≤ 8. Since we already decided to discard the values zCDT ≥ 0 ∧ c ≤ 8,
there are no zi = 0 in our dataset.

5.4 Results
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Fig. 8: Percentage of recovered Si,j equal to zero in blue and all the Si,j in red.
Dashed area show where false positives Si,j are found.

Figure 8 shows the percentage of recovered coefficients depending on the
number of traces. The results concerning the zero coefficients have already been
discussed in Section 3. If we consider all coefficients, it is possible to recover a
high amount of coefficients with a low number of traces, but this may lead to
false positives. As our attacks based on lattice reduction do not tolerate any
false positives, we increase the number of traces up to 1500. Results for lower
number of traces are only displayed to encourage future works regarding false
positives tolerance. Besides, recall that to distinguish between the coefficients
Si,j ∈ {−1, 1} we need additional information on the sign of zi as detailed in
Section 5.3, and we can only get this information for 63% of the zi as explained
in Section 5.2. The results shown on Figure 8 take this into account.

Overall, with 1500 power traces, we retrieve without any false positive:

• more than 95% of the Si,j = 0 with no additional information (Section 3),
• around 75% of all the Si,j with prior information on the sign of zi (here).
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6 Forging with Partial Knowledge of S

We combine the results from Section 5 with the attack from Section 4.1, and
assume that d columns of S out of m were recovered this way. We exhibit in this
section a strategy to forge a signature for a diminished cost using this knowledge.

Assuming that the first d columns S1 of S are known, up to reordering, let:

A = (Idm|Â|B) =

(
Idd 0d×m−d Âhigh Bhigh

1 Bhigh
2

0m−d×d Idm−d Âlow Blow
1 Blow

2

)
,

where Bhigh
1 ∈ Zd×d

Q , Blow
1 ∈ Zm−d×d

Q , Bhigh
2 ∈ Zd×m−d

Q and Blow
2 ∈ Zm−d×m−d

Q .
We also let B⊤

i = ((Bhigh
i )⊤|(Blow

i )⊤) for i ∈ {1, 2}.

6.1 Partial Forgery using S1

We first forge in the case where the m−d last coefficients of the target are all 0s.

Lemma 6.1. Let p, q,m, n, d be integers and Q = pq. Let u ∈ Zd
Q × {0m−d}.

Let v = ⌈u/p⌋ ∈ Zd × {0m−d}. Then (x∗
1,x

∗
2) = ((S1|0n×m−d)v,v) is a valid

HuFu signature for any µ such that H(µ) = u.

Proof. Verification computes x∗
0 = u−Âx∗

1−Bx∗
2 = (u mod p)+(E1|0m×m−d)v.

Moreover ∥x∗
0,x

∗
1,x

∗
2∥ ≤ B as we essentially set p = 02m+n and chose a short

vector in qZm + v′, using notations from Section 2.2. ⊓⊔

6.2 Complete Forgery via Lattice Reduction

In practice, the probability of finding a u ∈ Zm
Q satisfying the above constraint

is 1/Qm−d. Instead, we take any target u ∈ Zm
Q , ignore its first d coordinates

and find a suitable preimage of it for the last m− d rows of A.

Forgery. Let H(µ) = u = (u⊤
1 |u⊤

2 )
⊤, with u1 ∈ Zd

Q and ∥y∥ ≤ By with:

(Idm−d|Âlow|Blow
1 |Blow

2 ) · y = y0 + Âlowy1 +Blow
1 y2 +Blow

2 y3 = u2 mod Q,

for some By > 0 set later. We let u′
1 = u1 − (Âhigh|Bhigh

1 |Bhigh
2 )y. At this

point, our target is u′⊤ = (u′⊤
1 |01×(m−d)). Let us now consider the forgery

vector (x′
1,x

′
2) obtained with Lemma 6.1. The final forgery is:

x1 =
(
x′
1 + y1

)
and x2 =

(
x′
2 + y2

y3

)
.

Verification. The verification algorithm recovers:

x0 = u− Âx1 −Bx2

=

(
(u′

1 mod p) +E1⌈u′
1/p⌋

y0

)
=

(
x′
0

y0

)
.

It then checks the norm of (x⊤
0 ,x

⊤
1 ,x

⊤
2 ), which is at most ∥(x′

0,x
′
1,x

′
2)∥+∥y∥

and must be ≤ B. This last constraint drives the choice of By. In practice, we
empirically estimated ∥(x′

0,x
′
1,x

′
2)∥ to derive By.
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6.3 Cost of Forging as a Function of d

The cost of lattice reduction is estimated following the methodology outlined
in the original HuFu submission. Specifically, we rely on the nearest colattice
algorithm to determine the required BKZ block size and then estimate the as-
sociated computational cost using the Core-SVP model. Figure 9 illustrates the
estimated BKZ block size for HuFu-1. The bound By is derived by performing a
hundred forgeries for each value of d from Section 6.1 and computing the average
norm of the resulting vector (x′

0,x
′
1,x

′
2) as a function of d as shown in Figure 10.
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6.4 Combining Key Recovery and Forgery

We try to estimate the total cost of running both the key recovery and the forgery
attack. The combination of the two is parameterized by the amount d of columns
recovered by the key recovery and used by the forgery attack. We estimate the
cost of the combination as max(log2(d) + 0.292βkr, 0.292βforge(d)), where βkr

is the block size necessary to recover a column given 75% of its coordinates as
estimated via Section 4.1 and βforge(d) is the block size necessary to forge given d
columns of S as estimated in Figure 9. We present in Figure 11a the evolution of
the estimation of the total cost as a function of d when the amount of recovered
coefficients is about 75%.

Then, we optimize over d and show in Figure 11b the cost of the attack as a
function of recovered coefficients per column. Of particular interests are the 50%
and 75% threshold, as they correspond to the 0-only and all coefficients SCA
attacks on S. In the former case, the attack costs at least 62 bits, while in the
latter, the attack cost is down to 29 bits.

We challenge our hypothesis that leaked coefficients are evenly distributed
among all columns. In the case of the 75% recovered coefficients, we only need
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Fig. 11: Total estimated bit-cost of key-recovery and forgery...

that there exist 500 columns whose at least 75% of their coefficients are re-
covered to run the attack with the claimed bit-cost. Running estimations with
proba_estimates.py, it turned out to be the case every time.

7 Discussion

Combined Attack on Unstructured Lattices. Although our results target
an unprotected implementation, they highlight an important insight: the absence
of structure does not mitigate combined attacks (also known as partial key ex-
posure attacks). Furthermore, full key recovery during the side-channel step is
not necessary for a successful attack.

Further Countermeasures. The side-channel attack described in Section 3
and Section 5 relies heavily on the ternary nature of the matrices S and E.
For this reason, increasing the standard deviation of the distribution used for
the key generation could offer protection against such attacks. Alternatively,
arithmetic masking, proven in the ISW [ISW03] model, is a reliable countermea-
sure, widely used in lattice-based cryptography [BBE+18,BGR+21,dPKPR24].
Regarding the vector z, masking Gaussian samplers remains a complex and
performance-intensive task. In our attack, exploiting z is only effective when
combined with information about S, so protecting S alone is sufficient to thwart
our approach.

Future Works. Due to similarities with Falcon, HuFu may be vulnerable to
Hidden Parallelepiped Attacks that rely solely on z. However, such attacks have
only been performed on structured lattices. Extending them to unstructured
lattices may present additional challenges.
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A Proof of Lemma 2.1

Proof (of Lemma 2.1). Since Q is a power of 2, invertibility modulo Q is equiv-
alent to invertibility modulo 2. Therefore, wlog we work modulo 2.

Consider k1 < n − k2 and let {a1, . . . ,ak1+1} be random vectors in Zn−k2
2 .

For {a1, . . . ,ak1+1} to be linearly independent, two conditions must hold:
1. {a1, . . . ,ak1

} are linearly independent (event Ak1
).

2. ak1+1 /∈ span(a1, . . . ,ak1) (event Bk1).

Let pk1
denote the probability that {a1, . . . ,ak1

} are linearly independent. Thus:

pk1+1 = pk1
· Pr[Bk1

| Ak1
] = pk1

·
(
1− 2k1−(n−k2)

)
.

Starting with p1 = 1− 2−(n−k2), the result follows by induction. ⊓⊔
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