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Abstract. Classical usage of Hash-based Message Authentication Code
(HMAC) is known to be subject to Side-Channel Attacks (SCA). In case
physical leakage of information occurs, and without proper countermea-
sures, the variability of known message endangers the secret key through
statistical attacks. These attacks are not always applicable due to strict
constraints on attacker model. However, some protocols can choose not
to use the HMAC the way it was designed by swapping the roles of mes-
sage and key, and therefore modify the condition of applicability of such
attacks.

In this paper, we describe a new attack method that takes advantage of
the reduction of constraints induced by the choice to swap roles. More-
over, we describe two methods that can optimize previously existing
attacks against HMAC. One allowing to reduce the trace cost of some
attacks by ∼ 25% , the other allowing to adapt existing attacks even in
presence of partial countermeasures.

Keywords: HMAC · SHA-2 · SCA · Side-Channel · DPA · Masking ·

HKDF

1 Introduction

Side-Channel Attacks (hereafter called SCA) are a type of attack that use an un-
planned source of information (side-channel) leaking from hardware component.
When such a component runs an algorithm, fluctuations can appear on physical
measurements that are related to the values processed by the chip. If algorithms
are processing data related to secret information, such as in cryptographic al-
gorithms, the related leakages can lead to disclosure of secret information. The
first paper to consider these information leakages was focusing on execution time
of operations [11]. Once the potential of SCA discovered, other leakage mediums
were exploited such as: power consumption [12], electromagnetic emissions [8],
light emissions [6], acoustic emissions [9]. These sources of information can since
be exploited by attackers, allowing to target secrets during their processing in
an hardware component.
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Differential Power Analysis (hereafter called DPA) is a statistical SCA de-
scribed in [12]. Other enhancements of this attack exist such as the Correla-
tion Power Analysis [5]. In an attack of this family (hereafter called DPA-like),
the attacker performs numerous executions of code on a physical component
that involve the targeted secret information. For each execution, a measurement
through a side-channel is performed. Attack will then be possible depending on
the presence of leakage resulting from the combination of i) a known variable
(e.g. message) and ii) an unknown constant (e.g. key). The variations of the
measured leakages are expected to correlate the best when the known variable
is combined with the correct guess for the unknown constant.

In order to retrieve the used secret key, DPA-like attacks are known to be
able to target hash based algorithms such as Hash-based Message Authentication
Code (hereafter called HMAC) described in [4]. Several publications show how
to target HMAC with different leakages assumptions [14, 17, 3, 19].

As HMAC needs an underlying hash function, Secure Hash Algorithm 2
(hereafter called SHA-2), detailed in [15], is the most targeted algorithm in
these publications. However, these attacks are often also applicable on Secure
Hash Algorithm 1 (hereafter called SHA-1) as this algorithm partially shares
the same structures as SHA-2. Our contribution also focus on SHA-2 as main
example, however, we will show later that it can also be applied to SHA-1.

In these publications, state-of-the-art methods only consider classical usages
of HMAC. However, there exists protocols where the role of the message and the
key registers are swapped, such as HMAC-based extract-and-expand Key Deriva-
tion Function (hereafter called HKDF) or HMAC based Deterministic Random
Bit Generator (hereafter called HMAC-DRBG). For example, in HKDF specifi-
cation, the usage of a known value (called salt) as the HMAC key and a secret
fixed value (called IKM for Input Key Material) as the HMAC message is de-
picted. We cannot consider usages where the salt value is fixed [18, 1]. This is
due to DPA-like attacks that require a variable known input and are therefore
not applicable. We only consider protocols where the salt can be variable as a
diversifier, as suggested in [13, 10, 7]. Our contributions intend to show that such
a swap in the roles of message and key registers of HMAC can be dangerous as
it may remove a lot of constraints on attacker model.

In this paper, notations are detailed in Section 2, then the attack methods
of state-of-the-art and the evolution of the constraints on attacker model are
described in Section 3. Finally, our contributions are detailed in 4.

2 Notations

SHA-2 is in fact a set of several hash functions based on the same algorithm
but with several buffer sizes and different initial values, as described in [15]. All
these functions are based on the process described in Figure 1. The message is
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padded and cut in equal chunks depending on the chosen version of algorithm
block size. Then, starting with a constant known Initial Value (IV0), IV value is
mixed together with a message block by function f to produce the next block IV.
Function f processes 64 rounds Ri where IV is progressively mixed with message
block tranformed into 64 words (Wi). Finally, IV is added to the state before
being exited as the next IV. The output of last f is the hash value. ′+′ means
addition performed modulo 2 to the size of the word in bits corresponding to the
chosen algorithm. ′⊕′ means bitwise exclusive-or operation. ′∧′ means bitwise
′and′ operation. ′¬′ means bitwise ′not′ operation.

Message

Padding

Block#1 Block#2 Block#3 . . . Block#N

IV0 f IV1 f IV2 f IV3
. . . IVN−1 f hash

. . .

W0 W1
. . . W63

R0 R1
. . . R63 +

T

. . .

Fig. 1. Scheme of SHA-2 process.

Transformed message parts (Wi), have the property that the first 16 words
are the message block split in 16 words when the last 48 words are computed
as combinations of the previous ones. As this is not relevant in this paper, the
exact computation of later value is omitted but can be found in specifications
[15]. This means that an attacker controlling the message has control over the
first 16 Wi values and has knowledge of the next 48.

Entering f function, IV value is split in 8 words (A0, . . . ,H0), updated
through rounds to produce 8 words as output of the loop (A64, . . . ,H64). A
final word by word addition between (A64, . . . ,H64) and initial (A0, . . . ,H0) is
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performed to produce the IV of next block. Focusing on round Ri, equations are:

T1i = Hi +Σ1(Ei) + C (Ei, Fi, Gi) +Ki +Wi (1)

T2i = Σ0(Ai) + M (Ai, Bi, Ci) (2)

Ai+1 = T1i + T2i (3)

Bi+1 = Ai (4)

Ci+1 = Bi (5)

Di+1 = Ci (6)

Ei+1 = T1i +Di (7)

Fi+1 = Ei (8)

Gi+1 = Fi (9)

Hi+1 = Gi (10)

With some sub-operations (′Choice′ C and ′Majority′ M ):

C (Ei, Fi, Gi) = (Ei ∧ Fi)⊕ (¬Ei ∧Gi)

M (Ai, Bi, Ci) = (Ai ∧Bi)⊕ (Ai ∧ Ci)⊕ (Bi ∧ Ci)

Σ0 and Σ1 are not detailed here. The data passed as input of these transfor-
mation functions do not undergo changes in properties required for our attack.
E.g. a known value passed though these functions will remains known (the same
stands for properties: unknown, fix and variable).

T1i and T2i are temporary variables used to combine current round inputs
(Ai, . . . ,Hi) with round constant Ki and round message part Wi. Then, these
temporary variables are used to compute the current round outputs, denoted
(Ai+1, . . . ,Hi+1).

To ease further explanations, we set up several intermediate data references
that are not dependent on known constants Ki and on message part Wi:

δEi+1 = Hi +Σ1(Ei) + C (Ei, Fi, Gi) +Di

δAi+1 = Hi +Σ1(Ei) + C (Ei, Fi, Gi) +Σ0(Ai) + M (Ai, Bi, Ci)

These references are involved in the following equations:

Ai+1 = δAi+1 +Ki +Wi

Ei+1 = δEi+1 +Ki +Wi

HMAC SHA-2 is composed of two successive calls to SHA-2. The first is called
inner hash when the second is called outer hash. The key is processed through a
padding process to be of the size of one block. Then, the result is combined with
a constant called ipad by exclusive-or. Finally, the concatenation of the modified
key and the message to process is hashed. The result is used as a message for
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a second pass of the same process except that ipad is now replaced by another
constant called opad. This process is described in Figure 2. In this figure, message
padding method is replaced by Padding′ as the message bit length has a role in
padding and must then take into account the concatenation of first block from
key part.

Message

Padding′

Block#1 Block#2 . . . Block#N + 1

IV0 f IV1 = Si f IV2
. . . IVN f first hash

. . .

Key

Key Padding ⊕
ipad

Padding′

Block#1 Block#2

IV0 f IV1 = So f hmac

⊕
opad

Fig. 2. Scheme of HMAC- SHA-2 process.

In a classical usage of HMAC, the key is constant and therefore the dashed
area on Figure 2 identifies a part of computation that is constant and does not
depend on the message. Most attacks from state-of-the-art aim at retrieving
(Si, So). This pair of constant values allows an attacker to forge a valid HMAC
output by performing the non framed part of algorithm on Figure 2 with any
message.

HKDF is a key derivation function based on HMAC. The used inputs are the
secret source named IKM (e.g. shared secret during Diffie-Hellman key exchange)
and a publicly known salt. The key derivation consists in two steps:

– Extract that produces a Pseudo-Random Key (PRK) by using a HMAC
with the salt as the key and the secret IKM as the message:

PRK = HMAC(salt, IKM)

– Expand1 that uses obtained PRK as a key in a HMAC with a chosen mes-
sage (called info) to produce a derived key:

Keyinfo = HMAC(PRK, info)
1 Details about the Expand part of the computation are omitted here as we only focus
on Extract part. For more details, please consult [13].
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3 State-of-The-Art Attacks

During attacks explanations below, the known constants Ki will often be associ-
ated with known variables (e.g. Wi) as it does not have an impact (e.g. Ki +Wi

is also a known variable if Wi is). It could also have been included in targeted
constant and then been subtracted once the whole constant is recovered.

3.1 Early Attacks

Short description: Early attacks are described in [14, 2] where authors propose
the first attacks allowing to recover secret information of HMAC-SHA-2 through
a DPA-like attacks. Both does not apply constraints on attacker model, as only
a known message is required. However, specific constraints on the leakage model
must be met in order to be able to apply the attacks.

In [14], authors propose an attack in a context where Hamming distance
leakages appear on intermediate values of T1i, and on results of bitwise-and
operations inside of C and M functions.

In [2], authors propose a variation that needs Hamming weight leakages of
the same intermediate values.

The attack principle consists in using message variability (Wi) to attack Si

value when used as an IV ((A0, . . . ,H0)) during second block absorption of first
hash in HMAC. Once recovered, Si allows to compute the rest of inner hash.
The output produced is the input message of outer hash, then the exact same
attack can be conducted on So.

Step-by-step description: Is given hereafter, an example derived from early
attacks principle. At each step a constant, called here χi, is recovered through
a DPA-like attack.

1. Target E1 leakage, use the variability of W0 to recover the value of χ1 = δE1

constant:

E1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0)︸ ︷︷ ︸
δE1:Unknown Constant

+ K0 +W0︸ ︷︷ ︸
Known Variable

From now on, E1 becomes a known variable.
2. Target A1 leakage, use the variability of W0 to recover the value of χ2 = δA1

constant:

A1 = H0 +Σ1(E0) + C (E0, F0, G0) +Σ0(A0) + M (A0, B0, C0)︸ ︷︷ ︸
δA1:Unknown Constant

+K0 +W0︸ ︷︷ ︸
Known

From now on, A1 becomes a known variable.
3. Target E1 ∧ E0 leakage, use the variability of E1 to recover the value of

χ3 = E0 constant:

C (E1, F1, G1) = C (E1, E0, F0)

= (E1 ∧ E0)︸ ︷︷ ︸
Expected Leakage

⊕(¬E1 ∧ F0)



The Dangerous Message/Key Swap in HMAC 7

4. Target ¬E1 ∧ F0 leakage, use the variability of E1 to recover the value of
χ4 = F0 constant:

C (E1, F1, G1) = C (E1, E0, F0)

= (E1 ∧ E0)⊕ (¬E1 ∧ F0)︸ ︷︷ ︸
Expected Leakage

5. Target A1 ∧ A0 leakage, use the variability of A1 to recover the value of
χ5 = A0 constant:

M (A1, B1, C1) = M (A1, A0, B0)

= (A1 ∧A0)︸ ︷︷ ︸
Expected Leakage

⊕(A1 ∧B0)⊕ (A0 ∧B0)

6. Target A1 ∧ B0 leakage, use the variability of A1 to recover the value of
χ6 = B0 constant:

M (A1, B1, C1) = M (A1, A0, B0)

= (A1 ∧A0)⊕ (A1 ∧B0)︸ ︷︷ ︸
Expected Leakage

⊕(A0 ∧B0)

7. Target E2 leakage, use the variability of W1 and E1 and the knowledge of
E0 and F0 to recover the value of χ7 = (C0 +G0) constant:

E2 = D1 +H1 +Σ1(E1) + C (E1, F1, G1) +K1 +W1

= C0 +G0︸ ︷︷ ︸
Unknown

+Σ1(E1) + C (E1, E0, F0) +K1 +W1︸ ︷︷ ︸
Known Variable

8. Target A2 leakage, use the variability of W1, E1 and A1 and the knowledge
of E0, F0, A0 and B0 to recover the value of χ8 = G0 constant:

A2 = H1 +Σ1(E1) + C (E1, F1, G1) +Σ0(A1) + M (A1, B1, C1) +K1 +W1

= G0 +Σ1(E1) + C (E1, E0, F0) +Σ0(A1) + M (A1, A0, B0) +K1 +W1︸ ︷︷ ︸
Known Variable

Therefore, the resulting system of equation can be solved:

χ1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0) (11)

χ2 = H0 +Σ1(E0) + C (E0, F0, G0) +Σ0(A0) + M (A0, B0, C0) (12)

χ3 = E0 (13)

χ4 = F0 (14)

χ5 = A0 (15)

χ6 = B0 (16)

χ7 = C0 +G0 (17)

χ8 = G0 (18)
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A0, B0, E0, F0 and G0 are directly known (Equations 15, 16, 13, 14, 18).
Knowledge of G0 allows to get C0 (Equation 17). H0 can now be recovered as
the only unknown value in equation 12. Then, the same applies to D0 being now
the only unknown value in equation 11.

Summary of early attack: Early attacks have several constraints:

– Known message.
– Varying message with sufficient entropy.
– Leakage on two end-of-turn stored variables (Ei, Ai) over two first rounds.
– Leakage on four intermediate bitwise-and operations during second round

(E1 ∧ F1, ¬E1 ∧G1, A1 ∧B1 and A1 ∧ C1)

Later works pointed a drawback of such an attack in that it requires leakages for
two different processed values. One from round-end memory (Ai and Ei) that
will be stored, read and manipulated several times and one from temporary sub-
operations (bitwise-and) that can be harder to target for an attacker depending
on the attack conditions.

3.2 Partial Attack with Fewer Constraints

Short description: Methodology was furnished in slides from [17], briefly show-
ing an update of early attacks. Authors implied that leakage of bitwise-and oper-
ations used in Section 3.1 are not necessary anymore in counterpart of a chosen
message constraint. This short description was later detailed in [19].

Step-by-step description: Description is given here as some part were still
omitted in [19]. The new attack process needs four different sets of acquisitions:

– Set S0 with W0 varying.
– Set S1 with W0 fixed to any known value and W1 varying.
– Set S2 with W0 and W1 fixed to any known value and W2 varying.
– Set S3 with W0, W1 and W2 fixed to any known value and W3 varying.

Then the attack becomes:

1. Focusing on set S0 they use the same steps (1) and (2) of early attack
method described in Section 3.1 to recover δE1 and δA1 as conditions are
identical (W0 varying):

E1 = δE1︸︷︷︸
Unknown Constant

+ K0 +W0︸ ︷︷ ︸
Known Variable

A1 = δA1︸︷︷︸
Unknown Constant

+ K0 +W0︸ ︷︷ ︸
Known Variable

From now on, δE1 and δA1 become known constants.
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2. Focusing on set S1, as W0 is fixed to any constant value W ∗
0 , then E1

becomes fixed to a known constant value E∗
1 = δE1 +K0 +W ∗

0 . The same
stands for A1 that is fixed to a constant known value A∗

1 = δA1 +K0 +W ∗
0 .

Then, δE2 and δA2 become also constant as the only variable inside them
are E1 and A1. Then, the exact same attack than step (1) can be applied to
recover δE∗

2 and δA∗
2 :

E2 = δE∗
2︸︷︷︸

Unknown Constant

+ K1 +W1︸ ︷︷ ︸
Known Variable

A2 = δA∗
2︸︷︷︸

Unknown Constant

+ K1 +W1︸ ︷︷ ︸
Known Variable

From now on, E∗
1 , A

∗
1, δE

∗
2 and δA∗

2 become known constants.

3. The same principle propagates for set S2 when (W0,W1) are fixed to con-
stant values (W ∗

0 ,W
∗
1 ), then (E2, A2) becomes known fixed too (E∗

2 , A
∗
2)

and finally (δE3, δA3) become fixed to constant values and the same attack
becomes applicable to recover them:

E3 = δE∗
3︸︷︷︸

Unknown Constant

+ K2 +W2︸ ︷︷ ︸
Known Variable

A3 = δA∗
3︸︷︷︸

Unknown Constant

+ K2 +W2︸ ︷︷ ︸
Known Variable

From now on, E∗
2 , A

∗
2, δE

∗
3 and δA∗

3 become known constants.

4. Again, the same principle propagates for set S3 when (W0,W1,W2) are
fixed to constant values (W ∗

0 ,W
∗
1 ,W

∗
2 ), then (E3, A3) become known fixed

too (E∗
3 , A

∗
3) and finally (δE3, δA3) become fixed to constant values and the

same attack becomes applicable to recover them:

E4 = δE∗
4︸︷︷︸

Unknown Constant

+ K3 +W3︸ ︷︷ ︸
Known Variable

A4 = δA∗
4︸︷︷︸

Unknown Constant

+ K3 +W3︸ ︷︷ ︸
Known Variable

From now on, E∗
3 , A

∗
3, δE

∗
4 and δA∗

4 become known constants.

Therefore, the resulting system of equation can be solved:
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δE1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0) (19)

δA1 = H0 +Σ1(E0) + C (E0, F0, G0) +Σ0(A0) + M (A0, B0, C0) (20)

δE∗
2 = D1 +H1 +Σ1(E

∗
1 ) + C (E∗

1 , F1, G1)

= C0 +G0 +Σ1(E
∗
1 ) + C (E∗

1 , E0, F0) (21)

δA∗
2 = H1 +Σ1(E

∗
1 ) + C (E∗

1 , F1, G1) +Σ0(A
∗
1) + M (A∗

1, B1, C1)

= G0 +Σ1(E
∗
1 ) + C (E∗

1 , E0, F0) +Σ0(A
∗
1) + M (A∗

1, A0, B0) (22)

δE∗
3 = D2 +H2 +Σ1(E

∗
2 ) + C (E∗

2 , F2, G2)

= B0 + F0 +Σ1(E
∗
2 ) + C (E∗

2 , E
∗
1 , E0) (23)

δA∗
3 = H2 +Σ1(E

∗
2 ) + C (E∗

2 , F2, G2) +Σ0(A
∗
2) + M (A∗

2, B2, C2)

= F0 +Σ1(E
∗
2 ) + C (E∗

2 , E
∗
1 , E0) +Σ0(A

∗
2) + M (A∗

2, A
∗
1, A0) (24)

δE∗
4 = D3 +H3 +Σ1(E

∗
3 ) + C (E∗

3 , F3, G3)

= A0 + E0 +Σ1(E
∗
3 ) + C (E∗

3 , E
∗
2 , E

∗
1 ) (25)

δA∗
4 = H3 +Σ1(E

∗
3 ) + C (E∗

3 , F3, G3) +Σ0(A
∗
3) + M (A∗

3, B3, C3)

= E0 +Σ1(E
∗
3 ) + C (E∗

3 , E
∗
2 , E

∗
1 ) +Σ0(A

∗
3) + M (A∗

3, A
∗
2, A

∗
1) (26)

E0 can be recovered in Equation 26 as it is the only unknown value. Then, A0

becomes the only unknown value in Equation 25. This phenomenon is cascading
for F0 in Equation 24, B0 in Equation 23, G0 in Equation 22, C0 in Equation 21,
H0 in Equation 20 and finally D0 in Equation 19. Eventually, all targeted values
(A0, . . . ,H0) are recovered.

Application on HMAC: Attack on HMAC is incomplete as stated in [17].
The chosen message requirement allows to attack inner hash but this property
is lost for outer hash where message is only known. It has to be noted that this
partial attack still reduces the security of HMAC.

Summary of partial attack: the given methodology releases the constraint
from early attacks where several types of leakages were needed. However, in
counterpart, the message now requires to be chosen. The constraints of this
attack version are:

– Chosen message.
– Leakage on two end-of-turn stored variables (Ai, Ei) over four first rounds.
– Four sets of traces.

This attack can endanger HMAC but remains only a partial threat to its security.
Author of [19] have pursued this work to present a full attack path.

3.3 Complete Attack with Fewer Constraints

Short description: In [19], author starts from the partial attack suggested in
[17] and completes it in order to lead to a full secret recovery. The same condi-
tions are used (Ai and Ei leakages and chosen message constraint). However, in
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exchange to complete the attack with recovery of So, the HMAC output must
now be known.

Step-by-step description: The main idea is to attack by the end of the algo-
rithm as an addition is performed between targeted initial values (A0, . . . ,H0)
and the output of rounds that ingested the message block (A64, . . . ,H64). How-
ever, attacking the addition itself (as proposed in [2]) requires of another kind of
leakage. In order to respect the constraint to use only Ai and Ei leakages during
rounds, author of [19] makes use of the following equations:

hash0 =A0 +A64 ⇒ A64 = hash0 −A0

hash1 =B0 +B64 = B0 +A63 ⇒ A63 = hash1 −B0

hash2 =C0 + C64 = C0 +A62 ⇒ A62 = hash2 − C0

hash3 =D0 +D64 = D0 +A61 ⇒ A61 = hash3 −D0

hash4 =E0 + E64 ⇒ E64 = hash4 − E0

hash5 =F0 + F64 = F0 + E63 ⇒ E63 = hash5 − F0

hash6 =G0 +G64 = G0 + E62 ⇒ E62 = hash6 −G0

hash7 =H0 +H64 = H0 + E61 ⇒ E61 = hash7 −H0

hash values being the variable known HMAC output split in 8 words. B64, C64

and D64 are related to Ai in the 4 last rounds when F64, G64 and H64 are related
to Ei in the 4 last rounds. This allows to target, through a DPA-like attacks,
initial values (A0, . . . ,H0) when leakages from Ai and Ei computed in the four
last rounds are leaking.

It has to be noted that author of [19] details methods to palliate if A64 and
E64 are missing which will not be detailed here.

Summary of complete attack: This methodology fixes the partial HMAC
attack from [17] in counterpart to the HMAC output that requires now to be
known. The constraints of this attack version are:

– Chosen message.
– Known HMAC output.
– Leakage on two end-of-turn stored variables (Ai, Ei) over four first rounds

of inner hash.
– Leakage on two end-of-turn stored variables (Ai, Ei) over four last rounds

of outer hash.
– Four sets of traces.

4 Our Contribution

Our contribution lies in two parts. On first hand, we will describe how the choice
to swap the roles of the message and the key in HMAC usage can open a very



12 Antoine Wurcker and David Marçais

low constraint attack path compared to those of the state-of-the-art. On second
hand, we will describe some variations of state-of-the-art attacks on HMAC that
could reduce the number of traces needed by 25% or allow the attack even in
presence of some countermeasures (partial masking).

4.1 The Dangerous Message/Key Swap

In this section, we will show how switching the roles of message and key in HMAC
algorithm can seriously endanger the secret’s confidentiality. This permutation
is, for example, performed in protocols such as HKDF and HMAC-DRBG.

Swapping the roles means that the ”Key” from Figure 2 becomes known
or controlled by the attacker, when the ”Message” becomes a constant value,
unknown from the attacker. We will denote Key* the known variable key and
Message* the unknown varying message. For sake of clarity of explanations,
Message* will be considered as entirely secret and constant, and only Ei leakages
will be considered. These assumptions will be relaxed later.

As a consequence, Si becomes known to the attacker as it can be computed
from the known Key* through key padding, then combined by exclusive-or with
ipad constant and then mixed in f function with known IV (IV0). In fact, the
whole dashed section of Figure 2 becomes known by the attacker, even if only
Si is used here. On the other side, any Wi derived from Message* block values
becomes unknown and constant.

Thus, considering the second block absorption of inner hash, IV value is
composed of known variables (A0, . . . ,H0) andWi values are unknown constants.
As a reminder, the equation for E1 used in previous attacks was:

E1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0)︸ ︷︷ ︸
δE1: Unknown Constant

+ K0 +W0︸ ︷︷ ︸
Known Variable

When roles are swapped, this equation becomes:

E1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0) +K0︸ ︷︷ ︸
Known Variable

+ W0︸︷︷︸
Unknown Constant

Our attack is much easier compared to previous ones, as the constant to recover
per round is directly part of secret information (Wi) instead of the aggregation
of constants (δE1).

Step by step description of our attack process: Based on same leakage
assumptions done in [17, 19] we can mount a DPA-like attack recovering any
unknown constant (Wi values) in intermediate computations by using the vari-
ability of known IV:

1. Using the knowledge of varying Key* to compute, for each acquisition, the
value of Si, which is the IV of second compression function (f) call of inner
hash .
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2. Targeting E1 leakage, use the variability of known Si = (A0, . . . ,H0) to
recover the value of constant W0:

E1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0) +K0︸ ︷︷ ︸
Known Variable

+ W0︸︷︷︸
Unknown Constant

3. The acquired knowledges ofW0 and the one of (A0, . . . ,H0) allow to compute
the values of (A1, . . . ,H1) by applying the Equations (1) to (10).

4. Same as step 2 but targeting E2 leakage and using the variability of known
(A1, . . . ,H1) to recover W1.

5. Same as step 3 but computing (A2, . . . ,H2) from knowledge of W1 and
(A1, . . . ,H1).

6. By inference, step 2 and 3 can be repeated (with increment on indexes) to
recover W2 to W15 at respective rounds.

The secret W0 to W15 can therefore be recovered. There is no need to go
beyond W15 as the following values are only combinations of the previous ones.

Discussing using A instead of E: The equation detailed above in step-by-
step description only made usage of Ei leakages but the same equations stand
with only Ai kind of leakage by using:

A1 = H0 +Σ1(E0) + C (E0, F0, G0) +Σ0(A0) + M (A0, B0, C0) +K0︸ ︷︷ ︸
Known Variable

+W0

Discussing using A or/and E: As Ai equations and Ei equations both target
the same Wi−1, both can be used if available to potentially reduce the number
of traces needed to ensure that the correct value is recovered.
Also, if leakages are inconsistent from one round to another, roles can be mixed
(e.g. if implementation or hardware specificity induces best leakage of Ai on
some rounds and best leakage of Ei on other ones).

Discussing the low variability messages: If a protocol uses a low variability
known input (such as a counter), this could thwart state-of-the-art attacks. In-
deed, variability of message is used during DPA-like attack to target the constant
secret and a low variability could keep part of the secret out of reach.

However, in our attack scenario, the known input is Key* that is passed
through hash process f before using it to attack the secret. Therefore, as soon
as there are enough different values that can be used as known input to perform
the DPA-like attack, our attack benefits from good entropy properties offered
by hash sub-function f and is therefore not affected by low variability input.

Discussing the secret length: The example given in step-by-step description
considers a secret of size up to the length of one block. However, the method can
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be pursued in case of longer secret Message*. Indeed, once the first Message*
block recovered, the output of the second f call of inner hash can be computed
and therefore the IV of next call to function f becomes known and is varying.
Then the same process can be applied recovering, any number of Message* blocks
until fully recovered.

Discussing the discontinuity of secret: If portions of Message* are known
(varying or not), the attack can still recover the constant secret part. Indeed:

– if a full Wi word is known (varying or not), the equations still apply and
the attacker may directly target the next word Wi+1 or the next Message*
block.

– if a portion of a Wi word is known (varying or not) and another is unknown
and constant, then it can be split in two parts Wi = Wi,Known+Wi,Unknown.
Then the equation becomes:

E1 = D0 +H0 +Σ1(E0) + C (E0, F0, G0) +K0 +W0,Known︸ ︷︷ ︸
Known Variable

+ W0,Unknown︸ ︷︷ ︸
Unknown Constant

and therefore the unknown part can still be recovered.

An example of this situation can be found in the HMAC-DRBG process. A
simplification of the HMAC-DRBG process is presented here, for more details
please refer to specifications in [16]. In HMAC-DRBG, HMAC are performed in
a loop (∥ being the concatenation operator):

1. X, Y and Z are set to known values
2. HMAC(X,Y ∥Z∥Seed)
3. X is updated
4. Y is updated
5. Random bits are generated
6. Return to step 2

Seed is the main target for an attacker as it is the real secret here. Its recovery
allows to predict the generated deterministic bit sequence. X and Y initial val-
ues are known but their update can remain non-revealed to an attacker. Thus,
if another attack allows to recover some (X,Y ) pairs, our attack can then be
applied even in presence of varying content inside the Message* (here Y ).

Summary of our attack: Swapping the roles Message/Key relaxes constraints
applied on previous attacks. The constraints applied onto our attack are:

– Swap of roles between message and key.
– Leakage of Ai or Ei intermediate values on rounds corresponding to targeted

secret round of appearance.

Constraints per attacks are summarized in Table 1.
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Table 1. Summary of constraints per attack.

Early Partial Complete Our
([14, 2]) ([17]) ([19]) Method

Input with high entropy X

Leakage of A and E X X X

Other leakages types X

Chosen input X X

Several set of traces X X

Known HMAC output X

Leakage of A or E X

Swap Message/key roles X

Applicability to SHA-1: Our attack presented here takes advantage of the
way the message part (Wi) is mixed with IV (A0, . . . ,H0) in SHA-2. As this
algorithm has huge design similarities with its predecessor SHA-1, the applica-
bility of our method on this algorithm can be questioned. Here, briefs extracts
from specifications of SHA-1 [15] are used. The notations are kept but equations
that transform values are different. The attack is found applicable on SHA-1 by
using:

A1 = Rotation(A0) + C (B0, C0, D0) + E0 +K0︸ ︷︷ ︸
Known Variable

+ W0︸︷︷︸
Unknown Constant

4.2 Simulations

Previous work in [19] has already described a use case where no leakage can be
found, except for Ai and Ei intermediate values. Author has shown that such a
leakage can be used to perform an attack.

We still performed simulations to ensure the viability of our attack process.
The simulations were done on HMAC-SHA-2 algorithm, with hash size output
of 256-bit. First, simulated traces are created:

– 5,000 HMAC executions are performed with varying Key* and fixed Mes-
sage*. For each execution, 32-bit intermediate values Ei are gathered for
each round of each call to f function inside of inner hash of HMAC.

– For each execution, the Hamming weight of gathered 32-bit words are com-
puted and concatenated in order to produce one simulation trace.

– A random normal noise with scale σ is added to each trace in order to
simulate measurement noise.

Then, we simulate an attacker that have N traces available:

– Value of known Key* are used to compute Si = (A0, . . . ,H0) values for N
traces. δE1 can then be computed.

– DPA-like attack (here CPA) is performed on N first traces of the set, using
the least significant byte of δE1 variability to target the least significant
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byte of first 32-bit word of Message* (W0). Ranks of candidates were logged
during the attack.

– The best ranking candidate (correct or not) is taken to perform carry com-
putation and now another attack of same kind is performed on next least
significant byte of W0. The process is repeated for the 4 bytes of W0.

– Eventually a best ranking candidate for W0 (correct or not) is obtained, it
can be combined with (A0, . . . ,H0) to compute (A1, . . . ,H1) as explained
in our attack process. It must be noted that the candidate for W0 can be
incorrect if trace number is insufficient to correctly distinguish the good
candidate. Therefore, an error will propagate to value of (A1, . . . ,H1).

– The process can be repeated to target following Wi if necessary.

This attack simulation was performed for various N and σ values in order to
control the attack feasibility and the number of traces needed for recovery. The
simulations were positive to confirm the viability of the method: with σ = 5,
nearly 400 traces were needed to recover the correct value for W0, W1 and W2.
The number raised to nearly 1, 200 traces for σ = 10 and nearly 3, 500 traces for
σ = 15. Figures of attack result per byte are given in Appendix A.

4.3 Optimization of State-of-the-Art techniques on HMAC

We also provide two tricks to enhance previous work of state-of-the-art. These
tricks do not apply to our new attack methodology presented in Section 4.1.

25% decrease of number of traces: An optimization can be realized in
attacks on HMAC performed in [17, 19]. As described in 3.2, the attack on inner
hash requires that 4 sets are acquired. However, we point out that the fourth is
not necessary, thus reducing the number of required traces.

The first set is required to start the attack and use variability of W0 to attack
δE1 that is constant.

The second set is needed in order to fix W0 to have a constant E1 = E∗
1 .

Looking at Equation 21, the need to have a constant E∗
1 comes solely from choice

function (C ). Indeed, E1 known and variable is not a problem for Σ1(E1) that
is also a known variable and could have been transferred with W1 out of the
equation. As the attacker cannot process C (E1, E0, F0), due to the ignorance
of E0 and F0, this part becomes an unknown variable that thwarts DPA-like
attacks.

The third set is needed for the exact same reasons. Looking at Equations 23,
choice is again the problem here as if E2 is kept variable, C (E2, E

∗
1 , E0) becomes

a unknown variable due to the ignorance of E0.

However for the next round, there is no need of a fourth set, the final attack
can be done on the third one. Indeed, in Equation 25, if E3 is kept as a known
variable, then C (E3, E

∗
2 , E

∗
1 ) is also a known variable and can then be trans-

ferred with Σ1(E3) to the known variable part of the equation. In summary, the
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equation:

E4 = A0 + E0 +Σ1(E
∗
3 ) + C (E∗

3 , E
∗
2 , E

∗
1 )︸ ︷︷ ︸

Unknown Constant

+ K3 +W3︸ ︷︷ ︸
Known Variable

becomes:

E4 = A0 + E0︸ ︷︷ ︸
Unknown Constant

+Σ1(E3) + C (E3, E
∗
2 , E

∗
1 ) +K3 +W3︸ ︷︷ ︸

Known Variable

The exact same process can be applied on equation of A4. Therefore, the attack
can be done on 3 sets instead of 4 reducing the number of trace by ∼ 25%.

Shifting start of attack: As state-of-the-art attacks require leakages of in-
termediate values on rounds of hash function, a protection against SCA can be
applied to mitigate/remove these leakages. As state-of-the-art attacks detailed
in Section 3 need leakages only on first rounds, a choice can be made, for cost
reduction purposes, to apply the protection only on first rounds.

In such a situation of partial protection and in chosen message context,
we suggest to start the attacks on later rounds. As an example, if the n first
rounds of hash function f are protected but the following are not, one can fix
W0 to Wn−1 to thwart the protection. Doing so, the input of (n + 1)th round
(An, . . . ,Hn) are fixed and unknown and can be targeted by the same methodol-
ogy as (A0, . . . ,H0) could be. Once (An, . . . ,Hn) recovered, and with knowledge
of Wn−1, Equations (1) to (10) can be inverted to recover (An−1, . . . ,Hn−1):

An−1 = Bn

Bn−1 = Cn

Cn−1 = Dn

T2n−1 = Σ0(An−1) + M (An−1, Bn−1, Cn−1)

T1n−1 = An − T2n−1

Dn−1 = En − T1n−1

En−1 = Fn

Fn−1 = Gn

Gn−1 = Hn

Hn−1 = T1n−1 −Σ1(En−1)− C (En−1, Fn−1, Gn−1)−Kn−1 −Wn−1

This process can be done again on previous rounds and thanks to knowledge
of Wn−1 to W0, this allows to recover the targeted (A0, . . . ,H0).

The limitation of this method is the control of Wi by attacker as only the
first 16 words can be controlled2. Therefore, we recommend to mask at least the
16 first rounds to protect from this method.

2 For SHA-2 algorithm.
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5 Conclusion

After a detailed summary of state-of-the-art of DPA-like attacks against HMAC,
we have shown that some protocols make a dangerous usage of HMAC by swap-
ping the role of the message and the key. We conclude that this choice can
drastically reduce the constraints on attacker, which can ease attack on such
protocol, even in case of reduced leakages opportunities.

Moreover, we describe two methods that can optimize state-of-the-art at-
tacks. One by reducing by ∼ 25% the number of trace of some attacks. The
second allowing to adapt existing attacks even in case a partial masking coun-
termeasure is applied.

This work implies to further study the consequences of alternative usage of
algorithms outside the way they are specified. As an open subject, adaptations
of attacks to SHA-3 (and corresponding HMAC) should also be investigated as
it does not share the same common design of SHA-1 and SHA-2.
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A Simulations Results: Attack Score per Number of
Traces

As described in Section 4.2, simulations have been run to verify the feasability
of the attack methodology described in this paper. Each sub-plot shows the evo-
lution of the CPA score obtained per candidate for one targeted byte. Bytes are
the ones from 32-bit words W0, W1 and W2 values targeted during simulations.
The good candidate is in red/plus sign marked line while wrong candidates are
blue/straight lines. Figure 3 shows results when noise level is σ = 5 and Figure 4
shows results when noise level is σ = 15.
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Fig. 3. Simulation score evolution per byte, noise σ = 5
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Fig. 4. Simulation score evolution per byte, noise σ = 15
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10. Housley, R.: Use of the elliptic curve diffie-hellman key agreement algorithm with
X25519 and X448 in the cryptographic message syntax (CMS). RFC 8418, 1–18
(2018). https://doi.org/10.17487/RFC8418, https://doi.org/10.17487/RFC8418

11. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer Science,
vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/3-540-68697-5“˙9,
https://doi.org/10.1007/3-540-68697-5 9

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999).
https://doi.org/10.1007/3-540-48405-1“˙25, https://doi.org/10.1007/3-540-48405-
1 25

13. Krawczyk, H., Eronen, P.: Hmac-based extract-and-expand key derivation func-
tion (HKDF). RFC 5869, 1–14 (2010). https://doi.org/10.17487/RFC5869,
https://doi.org/10.17487/RFC5869

14. McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential
power analysis of HMAC based on sha-2, and countermeasures. In: Kim,
S., Yung, M., Lee, H. (eds.) Information Security Applications, 8th Inter-
national Workshop, WISA 2007, Jeju Island, Korea, August 27-29, 2007,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 4867,
pp. 317–332. Springer (2007). https://doi.org/10.1007/978-3-540-77535-5“˙23,
https://doi.org/10.1007/978-3-540-77535-5 23

15. NIST: Fips pub 180-4 secure hash standard (shs).
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf (2015), accessed:
Dec 10 2024

16. NIST: Recommendation for random number gen-
eration using deterministic random bit generators.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
(2015), accessed: Dec 10 2024

17. Pankaj Rohatgi and Mark Marson: Nsa suite b crypto, keys, and side channel at-
tacks. https://www.rambus.com/wp-content/uploads/2015/08/2013-JunMarson-
SuiteBAndSideChannel.pdf (2013), accessed: Dec 10 2024

18. Rescorla, E.: The transport layer security (TLS) protocol version
1.3. RFC 8446, 1–160 (2018). https://doi.org/10.17487/RFC8446,
https://doi.org/10.17487/RFC8446

19. Schuhmacher, F.: Canonical DPA attack on HMAC-SHA1/SHA2. In: Bal-
asch, J., O’Flynn, C. (eds.) Constructive Side-Channel Analysis and Se-
cure Design - 13th International Workshop, COSADE 2022, Leuven, Bel-
gium, April 11-12, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13211, pp. 193–211. Springer (2022). https://doi.org/10.1007/978-3-030-99766-
3“˙9, https://doi.org/10.1007/978-3-030-99766-3 9


