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Abstract. Cryptography is increasingly deployed in applications running on open devices
in which the software is extremely vulnerable to attacks, since the attacker has complete
control over the execution platform and the software implementation itself. This creates a
challenge for cryptography: designing implementations of cryptographic algorithms that are
secure, not only in the black-box model, but also in this attack context that is referred to
as the white-box adversary model. Moreover, emerging applications such as mobile payment,
mobile contract signing or blockchain-based technologies have created a need for white-box
implementations of public-key cryptography, and especially of signature algorithms.
However, while many attempts were made to construct white-box implementations of block-
ciphers, almost no white-box implementations have been published for what concerns asym-
metric schemes. We present here the first white-box implementation technique of HFE signa-
ture primitives, for a specific set of internal polynomials. For instance our implementations
of the signature primitive range from about 94MB for security level λ = 80 to 752MB for
λ = 128 for variations of the C∗+̂− primitive, and similar ranges for pC∗−. To motivate the
study of the security of the techniques we use, we also propose a challenge implementation
and the white-box compiler used to produce this implementation.
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1 Introduction

Since the seminal paper of Chow et al. in 2002, the research in the white-box model has mainly been
focused on standard symmetric block-ciphers such as DES and AES. Many candidate implementa-
tions have been proposed [13, 12, 10, 43, 27, 28] but all have later been broken due to very powerful
generic attacks (such as [8, 7, 25, 24]) or specific structural attacks (for instance [4, 23]). The goal
of these implementations is to provide security, with respect to stronger attack models, but weaker
cryptographic notions than in the black box model: unbreakability (being unable to extract the key
from the code), incompressibility (being unable to compress the code) or one-wayness (being unable
to invert the implementation).

Regarding asymmetric candidates, very few solutions have been proposed: the implementation of
Barthelemy [3] does not stand against generic attacks and the implementations of Shamir’s signature
[40] in [19] and of an IEEE P1363 signature in [44] only focus on key-extraction, ignoring the
incompressibility, while modifying the verifying algorithm in the white-box version of the scheme.
Recently unbreakable implementations of ECDSA have been investigated in the WhibOx21 and
WhibOx24 contests [41, 42]. However, among the hundreds of implementations, all were broken in
few days (see [1] and the websites of the contests [41, 42]). After almost two decades of research,
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it is safe to say that getting a secure white-box implementation for an existing algorithm is a hard
open problem.

In this paper, we propose the first investigation of white-box implementations of the HFE
signature primitive (Hidden Field Equation) [35], that we quickly recall in Section 2.2. Our study
shows that the richness of multivariate cryptography allows new possibilities for asymmetric white-
box cryptography, and we design and analyze an explicit construction based on these new ideas.

The techniques we use are radically different from the usual techniques used in constructions
for white-box symmetric cryptography. Moreover, they do not rely on security through obscurity,
i.e. our compiler is described according to Kerckhoffs’ principle and does not use any heuristic code
obfuscation techniques.

Our Contribution In the present paper, we exhibit the first white-box implementation of asym-
metric multivariate signature algorithms, in the following sense:

– We propose a new white-box implementation technique for nude HFE instances and incorpo-
rate the p, − and +̂ perturbations into our implementations. This design technique follows
Kerchkoffs’ principle and does not rely on any hidden information or procedure.

– The unbreakability property of our implementation in the white-box model is proven under
a reasonable assumption about the Isomorphism of Polynomials (IP) problem: a key-recovery
attack on the white-box implementation is not easier than in the black-box model.

– We also revisit the notion of incompressibility in the white-box model, giving a more precise
definition, and state a precise security conjecture in the case of our implementation : under this
assumption, an attack aiming at obtaining a smaller implementation is not easier than all the
standard attacks in the black-box model.

– We propose different parameters and choices of internal polynomials to derive concrete instan-
tiations for different security parameters : from about 94MB for security level λ = 80 to 752MB
for λ = 128 for variations of the C∗+̂− primitive, and similar ranges for pC∗−.

– We propose a challenge implementation as well as the white-box compiler used to produce it to
motivate the study of the techniques used in the paper : https://github.com/p-galissant/
WBHFE

Note that more material can be found in the extended version of the present paper, with addi-
tional details about multivariate cryptography, and other variants of HFE-based signature imple-
mentations in the white-box model.

Remark: From a practical point of view, the white-box implementations presented here are quite
heavy, which is somewhat inherent to the white-box model (and is especially related to the concept
of code incompressiblity). Nevertheless, the obtained sizes (from dozens to hundreds of MB) leave
the possibility of using them in realistic contexts, typically smart-phone applications, or cloud-based
applications for the strongest security levels. As an example, MasterCard Cloud-Based Payments
(MCBP) [30] is a secure and scalable software-based solution developed to digitize card credentials
and enable both contactless and remote payment transactions. In this context, MasterCard has
specifically recommended the use of white-box implementation for the secure storage of payment
tokens [31]. In addition, from a more theoretical point of view, it should be noted that our con-
struction provides the first white-box implementation of a public key algorithm together with an
extensive security analysis.

https://github.com/p-galissant/WBHFE
https://github.com/p-galissant/WBHFE
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Technical Overview Technically, our proposal is heavily based on the structure and flexibility
of multivariate cryptography. The main idea is as follows. We consider the HFE (Hidden Field
Equation) cryptosystem; its design involves an internal polynomial transformation F defined on
the field extension K = F2n , such that all the monomials have an exponent of Hamming weight
≤ 2. It is then composed with affine secrets S and T to get the public key P .

The usual way to invert P is to use the structure of F in the field extension and the trapdoor
consisting in the knowledge of S and T . However, we introduce a second trapdoor with the concept
of affine multiple that allows to invert P while not revealing S and T . Namely, for our purpose, we
intentionally choose F such that it has an affine multiple A ∈ K[X,Y ] of low degree in Y , that is:

– All the exponents of X involved in A(X,Y ) have a Hamming weight ≤ 1;
– Any solution of the equation F (a) = b is also a solution of A(a, b) = 0.

In a nutshell, the white-box implementation of the signature algorithm is derived from this affine
multiple A(X,Y ) and the secret key, and its size can be kept moderate since the degree of A in Y
is low. We then adapt this technique to also include perturbations of the public key P .

As a consequence, we obtain the following results: for an attacker who only knows the public key
of this HFE signature scheme, recovering the white-box implementation is not easier than breaking
the scheme in the black-box model; and from the white-box implementation, it is computation-
ally difficult for the legitimate user to recover the secret key, or even to compress the white-box
implementation.

Related Work In the present paper, we consider and target the traditional (white-box) notions
of unbreakability and incompressibility . We adapt the usual definition (see [14] for instance) to the
public-key setting in section 4. In this context, we describe a white-box implementation of an HFE
signature primitive, which belongs to a family of algorithms that has been extensively studied in
the black-box model and belongs to state-of-the-art cryptography.

The notion of unbreakability is a very intuitive security notion for white-box cryptography and
has been studied since the seminal paper of Chow et al in 2002 [13]. Ever since, cryptographers
have tried to propose white-box implementations of usual cryptographic algorithms, with mitigated
success. Block-ciphers have been the most studied as seen above. Recently, the WhibOx 2021 contest
[41] showed the interest of the community to produce an unbreakable implementation of the ECDSA
signature algorithm and the hundreds of implementations have all been broken. For the 2024 edition,
the contest is still focused on ECDSA [42].

The notion of incompressibility is a stronger security notion, first formally defined in [14] where
the study of this notion is motivated as a software countermeasure against code-lifting attacks. In
the same paper, the authors also propose an incompressible implementation of a special private-key
RSA in the Ideal Group Model. Since then, works like [5], [6], [20] or [26] have worked on defining
incompressibility and studying designed symmetric algorithms to achieve their definitions. However,
they focus only on symmetric algorithms.

We also refer to [21, 22] for a recent survey on all these white-box security notions.

Acknowledgments
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2 Background and Motivations

For any program or mathematical object P , we define Size(P ) to be the size in bits of its repre-
sentation.

(M , S, KV ×KS , V, S) is an asymmetric signature scheme where M is the message space, S is
the signature space, KV×KS is the key space, S is the signature algorithm, and V is the verification
algorithm.

For any keyed cryptographic function f with key k we note Cf the compiler specified to f and
Cf (k) the white box implementation of f with the key k.

For two programs A and B we note A ≈ B when A and B are functionally equivalent; i.e. they
agree on all inputs with probability 1.

Regarding polynomials, we note σ(n, d) to be the number of monomials in at most n variables
of at most degree d and M(n, d) is the cost of multiplying polynomials of degree d with coefficients
of size n. The rest of the notations are usual.

2.1 Public-Key White-Box Implementations

While many candidates have been publicly proposed to construct white-box implementations of
block-ciphers, almost no white-box implementations for public-key algorithms have been published
up to now, in spite of numerous research efforts.

The works of [19] and [44] achieve unbreakability but modify the verification algorithm and do
not address incompressibility. It is well known that white-box security is easier to obtain if we allow
ad-hoc designs. The present paper deals with a well-known and general-purpose family of signature
algorithms, that was not specifically designed for the white-box scenario.

The WhibOx 2021 and WhibOx 2024 contests [41, 42] showed that for the ECDSA algorithm,
even with hidden design, getting an unbreakable implementation of small size is out of reach. The
implementations, bound by the challenges benchmarks - 100MB source code, 50MB executable
size and RAM usage and 10sec running time for Whibox24 for instance - were all broken few
days after their publications. The report of Barbu et al. [1] goes through the generic attacks and
problems the implementations of the Whibox21 contest suffered. Especially, they show that due to
the fact that implementing a robust randomness generator is hard in the white-box model, all the
implementations can be broken using classic techniques such as fault attacks or lattice attacks.

Despite the hardness of the problem, there is a growing need for such implementations, moti-
vated by mobile payment ([17]), mobile contract signing (following the eIDAS regulation (EU Reg.
N◦910/2014) for instance) or blockchain technologies.

2.2 Multivariate Cryptography

We will assume that the reader is familiar with multivariate cryptography, especially with “Big
Field” trapdoors.
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Description of HFE First described by Patarin in [35], the HFE scheme is a direct descendant
of C∗ [33, 32]. For any positive integers n and D ∈ N, the central map F ∈ Fqn [X] is defined by:

F (X) =
∑

0≤i<j<n
qi+qj≤D

ai,jX
qi+qj +

∑
0≤i<n
qi≤D

biX
qi + c

where the ai,j , the bi and c are elements of F2n . As the integer D bounds the actual degree of any
such F , we call D the degree of the HFE instance. As the quantity ⌈logq(D)⌉ will be important in
the description of attacks, we set d = ⌈logq(D)⌉.

The secret key is the list of such polynomial F and a couple of affine bijective transformations
(S, T ) ∈ AFFn(Fq). We note it (S, F, T ). We remark that F is efficiently invertible on its image
due to the Berlekamp algorithm if D is not too big and that S and T are trivially invertible as long
as qn is not too big.

To compute the public key, let us fix a basis (e1, ..., en) ∈ (Fqn)
n of Fqn over Fq. It induces an

isomorphism π from (Fq)
n to Fqn such that π(x1, ..., xn) =

∑n
i=1 xiei . The public key P is the map

from Fn
q to Fn

2 is then defined by:

P = T ◦ π−1 ◦ F ◦ π ◦ S

The public key is represented by the n coordinates of P : for each 0 ≤ i < n we note its i-th
coordinate Pi ∈ Fq[x1, ..., xn].

Usually, a “nude” instance (that is, an instance without perturbations) is not enough to resist
the state-of-the-art attacks. That is why perturbations were introduced to reinforce these nude
instances, while keeping the trapdoor property.

We assume that the reader is familiar with the perturbations −, p ([15, 34]) and +̂ ([18]).

Security of HFE instances As we will precisely tune our HFE instances to optimize the trade-off
between security and implementation size, we recall briefly the best attacks found in the state-of-
the-art against various HFE instances using different perturbations. These attacks can mostly be
split in two categories : message-recovery attacks and key-recovery rank attacks. For the complexity
of message-recovery attacks, we follow [2]. As this complexity depends on the degree of regularity
of the public-key, we use the estimation of this degree following [39, 11, 37, 18]. For the complexity
of rank attacks, we follow the works of [34, 18].

3 The Implementation Technique

For the rest of the paper, unless specified otherwise, we consider HFE instances over F2.

3.1 Affine Multiple Attacks

The starting point of our construction is the concept of affine multiple. It was introduced by Patarin
in [35] to generalize an inversion attack on C∗ to HFE. The central idea of this attack is that for
any polynomial F ∈ F2n [x] there always exists a polynomial A(x, y) ∈ F2n [x, y] that is F2-linear in
x and a multiple of the polynomial F (x) + y. This means that if y = F (x), then A(x, y) = 0.
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Definition 1. Let F ∈ F2n [x]. The polynomial A(x, y) ∈ F2n [x, y] is said to be an affine multiple
of F if A(x, y) = 0 mod F (x) + y and A is F2-linear in x.

The goal of the original affine multiple attack is to recover A via interpolation. When A is known
to an attacker, they can plug any value of y to get a linear system in x of reasonable size they can
solve to efficiently sign without using the structure of the equation in F2n .

To further detail this attack, let us define the affine degree daff of an affine multiple:

Definition 2. Let A be an affine multiple of F (x) + y, that is, A(x, y) = a +
∑D−1

i=0 aix
2i with

a, ao, ..., aD−1 ∈ F2n [y] , if Mon(ak) is the set of the monomials of ak we define daff the affine degree
of A by:

daff := max
k

(
max

m∈Mon(ak)
HW (degy(m))

)
.

i.e. the maximum Hamming weight of the monomials in y in the polynomial A(x, y).

We then remark that the composition by these affine transformations S and T leads to a new
affine multiple that has the same daff degree. Now, to start the attack, just notice that A(x, y) is
composed of about n × σ(n, daff) unknown coefficients over Fn

2 , where σ(n, daff) is the number of
monomials in at most n variables in degree d. We will go through this in more details in Section
3. This means that with enough queries (x, P (x)), the unknown coefficients of A are the solution
of a linear system of n equations with n× σ(n, daff) unknowns that we can obtain with a Gaussian
reduction. This gives us an attack, if F is known to have such affine multiple, in space n2×σ(n, daff)
and in time (n× σ(n, daff))

ω.

This attack is quite inefficient in general as the degree daff is usually quite high. Also, it is well
known that the perturbation minus (−) protects from affine multiple attacks [35]. It is important
to remark that the cost of computing an affine multiple of F (x) + y is easier when the private key
(S, F, T ) is known than when only the public key P is known, especially when modifiers like minus
are used. This means that an affine multiple might be accessible with the knowledge of (S, F, T )
but not with the knowledge of P only.

3.2 Rationale of the construction

The main point of our construction is to use the affine multiple relation over F2 as an alternative
way to inverse a public key P : the affine multiple will be our white-box implementation. Indeed, if
we take y = F (x) in the image of F , computing x knowing an affine multiple A(x, y) boils down
to plugging y onto the expression and then solving linear system in x. If the affine multiple is of a
reasonable size, computing x is as easy as evaluating the affine multiple in y.

The feasability of the construction is due to the fact that computing an affine multiple from the
secrets is easier than from the public key. As we will see later, the security is expected from the
hardness to extract the secret key from the affine multiple and the hardness to compress it.



White-Box Implementation Techniques for the HFE family 7

3.3 Construction for nude Public-Keys

Computing the affine multiple We now detail the existence of affine multiples and expose an
algorithm to efficiently compute them if possible.

To prove the existence of affine multiple, let us assume that D = deg(F ) is such that D < n
and let us consider the vector space F2n(y)[x]/(P (x)+y) of dimension D = deg(F ) over F2(y). Now,
the (D + 1) F2-linear polynomials (1, x20 , x21 , ..., x2D−1

) are linearly dependent:

∃ a, ao, ..., aD−1 ∈ F2(y) , a+

D−1∑
i=0

aix
2i = 0 mod (F (x) + y)

To compute the coefficients ak, we can use the reductions of the monomials x2i modulo F (x)+y:

∃ bi,0, ..., , bi,D−1 ∈ F2(y) , x
2i =

D−1∑
j=0

bi,jx
j mod (F (x) + y)

We then reinject into the previous equation:

a+

D−1∑
i=0

ai

D−1∑
j=0

bi,jx
j = 0

This clearly translates into the linear system:
1 b0,0 · · · bD−1,0

0 b0,1 · · · bD−1,1

...
...

. . .
...

0 b0,D−1 · · · bD−1,D−1

×


a
a0
...

aD−1

 =


0
0
...
0


We can then solve this system with Gaussian reduction in F2(y). Multiplying this relation by

the LCM of the a′ks denominators leads to an affine multiple polynomial A(x, y). We now note
ak ∈ F2[y] the polynomials in y obtained that way. This proves the existence of an affine multiple,
and gives us at the same time an algorithm to compute it.

Remark: We do not claim the uniqueness of the affine multiple. It is indeed clear that consid-
ering D other F2-linear monomials leads to a similar relation, but it is not clear how it affects the
coefficients ak obtained.

The white-box construction We now detail the construction of our white-box compiler and how
to use it in practice. As we mentioned earlier, we focus on implementing the P−1 functionality as
it is enough to guaranty unbreakability and incompressibility (see Section 4.4).

Now, to start the white-box transformation from an HFE secret key (S, F, T ) over n bits - with
bijective affine transformation S : Fn

2 → Fn
2 and bijective affine transformation T: Fn

2 → Fn
2 and

the public transformation π - the compiler computes first the affine multiple A(x, y) of F over F2n

following the algorithm described in the previous section.
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From the polynomial A(x, y), the compiler can now compute the coordinates
Ai(x1, ..., xn, y1, ..., yn) (for i ∈ J1, nK) of A through the isomorphism π, and its composition with
the secret maps S and T :

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

Now, to compute P−1(y), one can plug the coordinates y1, ..., yn of y into the polynomials Ãi

to get a linear system of n equations in x1, ..., xn that can be solved through Gaussian inversion
for instance. However, one should worry that (F (x) = y) only implies (A(x, y) = 0), and not the
reciprocate. Indeed, when we plug y in, we might get a solution x such that (A(x, y) = 0 and
F (x) ̸= y). To avoid such cases, we have to verify that for the chosen y, the signature is valid (i.e.
F (x) = y). As the verification is made with the public key, the time needed to perform this check
is negligible. We define the collection of the n polynomials Ãi, the code for evaluation and the code
for linear inversion to be the white-box implementation of the computation of P−1. We note this
compiler WBHFE . This leads to the compiling Algorithm 1 :

Algorithm 1: White-box compiler WBHFE

input : A HFE secret key (S, F, T ) with affine S and T
output: WBHFE(S ,F ,T ) the white-box implementation of P−1 with key (S, F, T )

– Compute the affine multiple A(x, y) of F with algorithm of section 3.3
– Compute the composition with secrets S and T and projection maps to get the coordinates of Ãi:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

– Produce a code that partially evaluates the Ãi over the y1, ..., yn
– Produce a code that compute a pre-image of the vector 0 through linear application given by the

partial evaluations of the Ãi, and output "NONE" if no solution can be found.
– Produce a code that check if the message to be signed is in the image of P .
– Concatenate the produced codes to get the whole white-box implementation WBHFE(S ,F ,T ).

3.4 Dimensioning of the construction

The study of size of our solution boils down to two points: the computation of the multiple A over
F2n and the size of its coordinates Ãi over (F2)

n. Indeed, the code size needed to perform evaluations
of polynomials and Gaussian inversion is negligible. For the representation of polynomials, we use
the so-called “sparse” representation to get the smallest size possible. The size analysis is of course
to be linked with the white-box incompressibility which is detailed later on.

Cost of computing an Affine Multiple. To compute the coefficients bi,j , we have to go through
the reduction of the monomials x2i modulo F (x)+y, with 0 ≤ i < D. Due to the reduction modulo
F (x) + y, the degree of bi,j can be as big as 2D and the bi,j can have up to 2D monomials. The
last part of the algorithm only solves a D × D system, leading to a worst case complexity if the
polynomials bi,j are dense:

O(M(n, 2D)Dω)
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where M(n, 2D) is the cost of multiplying polynomials of degree 2D with coefficients of size n. This
means that with D = O(n), computing this relation is usually impossible. However, we will use it
with smaller polynomials than in usual HFE, i.e. D = O(1).

Size and Running Time of the WBHFE implementation. The central part of this analysis
is the affine degree daff ( definition 2), the greatest Hamming weight that appears in the description
of the affine multiple A over F2. Over F2, daff+1 is the highest degree of the monomials encountered
in the expression of A(x, y). Indeed, A(x, y) is linear in the xi but of degree daff in the yi.

If we note σ(n, daff) to be the number of monomials in at most n variables of degree at most
daff, this means that we have about n×σ(n, daff) coefficients in Fn

2 needed to compute a coordinate
Ai of A(x, y). When we compose by S and T to get Ã, the overall degree does not change since
S and T are affine transformations. This means that each coordinate Ãi is composed of at most
n× σ(n, daff) monomials since S is a map from n bits to n bits.

As we are computing n coordinates, a lot of monomials will be shared in the expressions of the
Ãi and it is more efficient to compute all the monomials that appear in these expressions, and then
sum them. Since we want to only evaluate these polynomials in yi to get a linear system in xi, to
then inverse it, we will represent the n polynomials Ãi as a matrix of polynomials over the yi. This
transformed expression is of the same size but will be more suited to our goals. To do so, we define
the polynomials Ãi,j(y1, ..., yn) by the expression:

Ãi(x1, ..., xn−p, y1, ..., yn) =

n∑
j=0

Ãi,j(y1, ..., yn)× xj

Key elements of WBHFE: We can now precisely state the size of our construction. Since we
will need to use great values of n, we will say in our size study that code sizes are “negligible” if
they are small - that is a few kB. Our construction is composed of:

– A code that evaluates, on an input m = (m1, ...,mn) of size n, all the monomials of at most
degree 2 in the mi. As we compute all the monomials, a generic code can be made. This means
that this part is negligible in code size. However, this code will produce σ(n, daff) bits during its
execution. We will also suppose - without loss of generality - that these monomials are computed
in an ordered way, with a label from 1 to σ(n, daff).

– The n× n files Filei,j i,j < n for which the k-th bit of the file Filei,j is 1 if the k-th monomial
computed by the precedent code is in the expression of the polynomial Ãi,j . These files are
the heaviest part of our implementation: their size is σ(n, daff) bits. As we need each of the
coordinates, the whole size is n2 × σ(n, daff). We divide the n2 polynomials into n2 files so we
can load them one at a time during evaluation, with potential for parallelization.

– A code that computes the evaluation of Ãi,j(m1, ...,mn) given the evaluations of the monomials
of degree 2 in mi and the file Filei,j . To do so, one just has to go through the file Filei,j
and sum the corresponding monomials as they go. This code is negligible and can load one file
Filei,j at a time.

– A code that computes the n by n binary matrix MatÃ such that (MatÃ)i,j = Ãi,j(m1, ...,mn).
This code is also negligible.

– A code that computes a solution for the linear system MatÃX = 0, X = (x1, ..., xn)
T . This can

be done by Gaussian elimination. Hence, it is negligible.
– A code that checks whether m was in the image of P , i.e. if P (x) = m. This can be done with

the public key, whose size is n× σ(n, 2). The rest of the code is negligible.
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Size and Time This means that the code is composed of the n2 Filei,j for n2 × σ(n, daff) bits, the
matrix MatÃ of n2 bits, the public key of n× σ(n, 2) bits, and some negligible code. The full size
is then:

n2 × σ(n, daff) + n2 + n× n2 + negl ≈ n2 × σ(n, daff)

For the rest of the paper we will define:

σWB := n2 × σ(n, daff)

Regarding time, it is interesting to note that the computation of P−1 can be parallelized. Indeed,
the n × n polynomials in the files Filei,j can be computed independently. When the polynomials
are evaluated, there is only a small n by n system to solve. If the evaluation of polynomials in the
files Filei,j is parallelized np < n2 times, the time for inverting P−1 is:

τWB := nω +
n2

np
× σ(n, daff)

Discussion on the affine degree. As seen in the previous section, the size of our construction is
exponential in the affine degree daff, so it is important for us to understand its variations depending
on F . As a consequence of the algorithm we used to prove the existence of a multiple affine, we know
that the degrees involved in the computation of the multiple are upper bounded by 2D where D is
the degree of F . The affine degree is then bounded by D but this bound is clearly an overestimate.
Through our experimentation we found that polynomials with degree of at most degree 12 can
reach any affine degree ranging from 2 to 6. These experiments show that most of small daff can
be reached and that there are many polynomials reaching these values. We give examples of some
families of these polynomials with d = 3 in the following table but these are just mere examples
and any polynomial with the desired affine degree can be used in our construction.

Internal Polynomial F , ∀A,B ∈ Fn
2 daff

x12 +Ax10 +Bx6 2
x12 +Ax4 +Bx3 3
x10 +Ax6 +Bx3 4
x10 +Ax5 +Bx3 4
x12 +Ax10 +Bx5 5
x12 +Ax5 +Bx3 5
x10 +Ax6 +Bx4 6

Table 1. For the polynomials F proposed, the affine multiple is easily computable with the algorithm of
section 3.2. The values daff are exact, provided that – for our choice of A and B – the terms of degree daff
do not vanish (this only happens on few singular points).

Besides our experiments on low degree polynomials, there are some examples that are really far
from any expected bound. For instance, the Dobbertin polynomial x2m+1+1+x3+x (see [16]) has a
multiple affine of affine degree 3 over F22m+1 for every value m ([35]), which is – in general – really
different from the observed values.
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3.5 Using Perturbations

Usually, nude HFE instances are not sufficient by themselves to get reasonable black-box security.
The goal of this section is to explain how we can turn the implementation of a nude HFE instance
into a perturbed one. We will focus on three of them: p, −, and +̂. For each perturbation on the
public-key, we associate a perturbation or a list of perturbations between parentheses (p correspond-
ing to (p) for instance) that are applied on the affine multiple of the nude HFE instance to match
the perturbations made to the public-key. Note that these methods to incorporate perturbations
into affine multiples do not change state-of-the-art perturbations on the public-key.

The p Perturbation To transform a nude public key to one perturbed with p, one only needs
to replace the bijective affine application S : Fn

2 → Fn
2 with an affine transformation of full rank

Sp : Fn−p
2 → Fn

2 for a small integer p.

This replacement can be made in the affine multiple representation by also replacing S by Sp,
so the perturbation is compatible with the affine multiple structure.

For a HFE instance perturbed with "p", we associate its affine multiple where S is replaced by Sp.
When we use this perturbation on the affine multiple, we note that Ã is perturbed by (p).

The − Perturbation To transform a nude public-key to a one perturbed with −, one needs to
remove some coordinates from the public-key. Let a be the number of equations removed. To sign
with the private key, one needs to select at random these last a coordinates, and then proceed to
the normal signing procedure.

The fact that the a last coordinates are random or at least secret is important to avoid any
reduction to a nude public-key. Indeed, if the values of these coordinates are known for each signature
produced, an attacker can then interpolate them and completely remove the − modifier from the
key: the last a coordinates cannot be freely chosen in the white-box model.

For instance, one could try to replace the last a coordinates of y with any linear combination of
the first n − a coordinates. Then, the attacker knows that the missing polynomials in x are equal
to a linear application in y and can then interpolate them from some couples message-signature
(even in the black-box model). Note that, in practice, the choices we can make here are limited. If
we take polynomials of degree 2 in the first n− a coordinates for instance, the degree of the affine
multiple increases. If these coordinates depend on x the affine multiple is not linear in x anymore.

If the HFE instance is itself resistant enough in the white-box model, one possibility is to let
the last a coordinate free to be chosen at random for signing:

For a HFE instance perturbed with "-", we can associate its affine multiple without any modification
from the nude one, but the last a coordinate of the signature are taken at random. When we use
this perturbation on the affine multiple, we note that Ã is perturbed by (−, 1).

Remark : Even if the affine multiple is not modified we can remark that in the black-box model,
the last a coordinate are random so the reduction to an HFE instance without minus is not possible
in the black-box model. This means that the (−, 1) perturbation on the affine multiple does not
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carry the security from minus in the white-box model but keeps it in the black-box model. More
on the security of (−, 1) in section 4.

A direct consequence of the previous remark is that the − perturbation is not directly compatible
with the affine multiple structure. To partially go around this problem, we propose a countermea-
sure. To efficiently interpolate the missing equations of the public key, the attacker needs to know
that the a last coordinates depend from x and y in a simple way. We will then try to hide these
coordinates in a single special affine multiple.

First, through the isomorphism π, we decompose y = y′+y− from a direct sum Fn
2 = Fn−a

2 ⊕Fa
2 .

The idea is to have an affine multiple that represents at least 2 fixed choices for the last a coordinates
y−. To do so, let us take any integer ns > 0 and split Fa

2 = ∪ns
i=1Ui where #Ui = ϵi ≥ 2. We set

Ui = {ui,1, ..., ui,ϵi}. Now consider the polynomials :

Gi(x, y
′) =

ϵi∏
j=1

(y′ + ui,j − F (x))

We now want an object that is similar to an affine multiple for the polynomial F , but for the
polynomials Gi. To do so, we introduce the composite affine multiple:

Definition 3. Let δ ∈ N, ∀i, Fi ∈ F2n [x] and G(x, y) =
∏δ

i=1(Fi(x)−y). The polynomial A(x, y) ∈
F2n [x, y] is said to be a composite affine multiple of G if A(x, y) = 0 mod G(x, y) and A is F2-linear
in x.

Remark: It is obvious that the algorithm of section 3.3 can be adapted to compute a composite
affine multiple. The modulus simply needs to be changed to the product G. Its functionality is then
similar to a regular affine multiple, except the solution satisfies one of the equations Fi(x) = y.

A composite affine multiple Bi(x, y
′) of Gi in unknowns x and y′ can produce signatures for

which the last a coordinates of the message can be any element of Ui (relatively to the nude
public key). When signing in the white-box model, the value of the ui,j are then not revealed and
the signature can be chosen randomly among the ones satisfying the n − a first coordinates. An
attacker can then, at best, guess that the missing coordinates lie in a set of ϵi values to interpolate.

To incorporate the "−" perturbation in the white-box model, we will use the polynomials Gi

and apply the affine multiple construction:

For a HFE instance perturbed with "-", we can associate the collection of the affine multiples of
the Gi. When we use this perturbation, we note that the implementation is perturbed by (−, 2)
with parameters (ϵ1, ..., ϵns).

Remark : In the (−, 2) perturbation, we provide a collection of ns affine multiple to cover
the whole vector space Fa

2 . Note that it is possible to do it for only few values, only one of the
Ui for instance, and then get an implementation that produces a signature only when the last a
coordinates are in Ui. This will lead to a smaller signature space and a smaller implementation size.
More details on this technique will be given in section 5.
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The +̂ Perturbation To transform a nude public key to a one perturbed with +̂, one needs to
change the central polynomial F into F +Q where Q is quadratic over F2 and of high degree over
Fn
2 such that ∀x ∈ Fn

2 , Q(x) ∈ V , where V is a small vector space of dimension t.

Similarly to the "−" modifier, the value of Q(x) for any message y cannot be known to an
attacker, otherwise Q can be interpolated. That is why the +̂ perturbation is not directly compatible
with the affine multiple construction. Also, it is not possible to propose a perturbation close to (−, 1)
as the values of Q cannot be left to be freely chosen.

We propose the same kind of perturbation as (−, 2) to not reveal the values of Q(x). To do
so, let us take any integer ms > 0 and split Im(Q) = ∪ms

i=1Vi where #Vi = δi ≥ 2. We set
Vi = {vi,1, ..., vi,δi}. Now consider the polynomials:

Hi(x, y) =

δi∏
j=1

(y − F (x)− vi,j)

A composite affine multiple Ci(x, y) of Hi in unknowns x and y and fixed vk can produce signatures
for which the value of Q can be any vi,j . An attacker can then at most guess that the missing
coordinates lie in a set of δk values to interpolate.

For a HFE instance perturbed with "+̂", we can associate the collection of the affine multiples of
the Hi. When we use this perturbation, we note that the implementation is perturbed by (+̂) with
parameters (δ1, ..., δms

).

Remark : In the same spirit as the remark on the (−, 2) perturbation, it is possible to not use
the whole collection of the Hi, but only few, or one of them. More details on this technique will be
given in section 5.

Combining Perturbations Usually, multiple perturbations are used on a nude-HFE to achieve
satisfactory security parameters be it pHFE− or the more recent HFE+̂−.

For our white-box implementation, we proceed similarly, although the compatibility depends on
the perturbation used. For instance, the (p) and (−, 1) perturbation are easily compatible with (+̂)
but (−, 2) and (+̂) needs more a subtle adaptation to work together: instead of splits of Fa

2 and
Im(Q), one needs to work with a split of Fa

2 × Im(Q) and work with affine multiples of products
of polynomials of the form (y + u− F (x)− v), with u ∈ Fa

2 and v ∈ Im(Q).

In Section 5, we detail more on the compatibility of perturbations for affine multiples in a case
by case basis on the implementation.

4 Security analysis

In this section, we define the white-box security notions of unbreakability and incompressibility for
public-key signature algorithms. We then analyse the security of our construction for these notions.
For the rest of this section we suppose that A is an affine multiple of F or a composite affine multiple
with respect to perturbations of section 3.5.
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4.1 White-Box Security Notions

The usual software white-box security notions that are discussed in the literature are unbreak-
ability, incompressibility, one-wayness and traceability. While we study the first two, we do not
consider traceability, and one-wayness does not make sense for decryption or signature in asym-
metric cryptography: the one-wayness of decryption/signature in a public-key setting would mean
that public-key encryption/verification is impossible, which is a contradiction by definition.

We follow [14] to extend the security notions of (τ, ϵ)-unbreakability and (σ, τ, ϵ)-incompressibility
and adapt it to in the public-key setting. Furthermore, we shortly show that the unbreakability and
incompressibility of the HFE one-way function is the key element to study.

4.2 Unbreakability

Let us describe the game for unbreakability of a compiler CS :

– Draw at random a key k in private keyspace KS
– The adversary A gets the program CS(k) from the compiler
– The adversary A returns a key guess k̂ in time τ knowing CS(k)
– The adversary A succeeds if k = k̂

Definition 4. Let S be an asymmetric signature algorithm, CS a white-box compiler and let A be
any adversary. We define the probability of the adversary A to succeed in the unbreakability game
by:

SuccA,CS := P[k ← K;P = CS(k),A(P) = k̂; k = k̂]

We say that CS is (τ ,ϵ)-unbreakable if for any adversary A running in time τ , SuccA,CS ≤ ϵ.

Remark 1: Here, we do not set A to be a polynomial adversary depending on a security
parameter λ and hope that ϵ is exponentially small in λ, as we are interested in concrete security
for our chosen parameters.

Remark 2: This definition can usually be found with a parameter δ that allows the program
P to agree with the targeted function with probability δ. As no known attack exploits this fact, we
did not include it for sake of clarity.

4.3 Incompressibility

We now describe, for any σ > 0 the game for incompressibility for a compiler CS :

– Draw at random a key k in private keyspace KS
– The adversary A gets the program CS(k) from the compiler
– The adversary A returns a program P knowing CS(k)
– The adversary A succeeds if P ≈ CS(k) and size(P) ≤ σ
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Definition 5. Let S be an asymmetric signature algorithm, CS a white-box compiler and let A be
any adversary. We define the probability of the adversary A to succeed in the σ-incompressibility
game by:

SuccA,CS := P[k ← K;P = A(CS(k)) ;P ≈ CS(k); (size(P) ≤ σ)]

Moreover, we say that CS is (σ,τ ,ϵ)-incompressible if for any adversary A, Time(A)+Time(P) <
τ implies SuccA,CS ≤ ϵ.

The definition of incompressibility we propose here is a slightly corrected version from the usual
one used in [14]. Indeed, this one is flawed as it does not constrain the running time of the program
P. If the running time is not bounded we can propose a compression of any white-box algorithm by
using brute force: an attacker can compute few pairs plaintext-ciphertext, and code the brute force
attack on the primitives that is white-boxed, and then code the computation of the primitive with
the key found. This program can be made with few lines of code, is identically functional to the
white-box code, but has an unreasonable running time. That is why we add a new time constraint:
we want that the sum of the running time of the attacker and the program produced is less than a
constant τ representing the whole computation time allowed.

4.4 White-Boxing the Inversion of a Secure Trapdoor One-way Function is Enough

The goal of this section is to show that for notions like unbreakability and incompressibility, it is
sometime enough to look at the white-box implementation of a core component of the signature
algorithm, and not the entire algorithm itself. Note that all the following remarks also work for
encryption for instance.

It is common to have signature built from a secure trapdoor one-way function (OWF) and
extended into complete signature algorithm following the so-called ’hash-and-sign’ paradigm. This
is the case for RSA, with FDH or PSS and for instance it is also the case for HFE with Feistel-
Patarin (used in GeMSS [11]). It is natural to study the white-box properties of these functions
and how they extend to their corresponding signature schemes. In this case, what is interesting is
the implementation of the inversion of f , for which a secret is needed.

For the rest of the paragraph, f : X ×K → Y is a secure trapdoor one-way function and Cf−1 is a
white-box compiler for the inversion of this function. We define unbreakability and incompressibility
similarly as we did for signatures. The game for unbreakability for the compiler Cf−1 is as follows:

– Draw at random a key k in private keyspace K
– The adversary A gets the program Cf−1(k) from the compiler
– The adversary A returns a key guess k̂ in time τ knowing Cf−1(k)

– The adversary A succeeds if k = k̂

Definition 6. Let f be a secure trapdoor one-way function, Cf−1 a white-box compiler of its in-
version and let A be any adversary. We define the probability of the adversary A to succeed in the
unbreakability game by:

SuccA,Cf−1 := P[k ← K;P = Cf−1(k),A(P) = k̂; k = k̂]

We say that Cf−1 is (τ ,ϵ)-unbreakable if for any adversary A running in time τ , SuccA,Cf−1 ≤ ϵ.
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Remark 1: This definition can also be extended to incompressibility as in section 4.1.

We now study signature schemes that are built “on top” of the inversion of a trapdoor OWF,
which a general term to qualify many existing techniques like FDH, PSS or Feistel-Patarin cited
before.

Definition 7. We say that a signature algorithm S is built “on top” of a trapdoor one-way function
f if it can decomposed in two algorithms:

– Algorithm A : On the input of an element in Im(f), outputs one of its pre-image
– Algorithm B : On the input of a message, outputs a signature S(m) of m. The B can only

perform computations using the message m, public data, data drawn at random and calls to A.

With such algorithms we can reduce the unbreakability of the signature algorithm to the un-
breakability of the trapdoor OWF.

Proposition 1. Let f be a secure trapdoor one-way function. Let WBf−1 be any (τ, ϵ)-unbreakable
implementation of f−1. If S is a signature algorithm built "on top" of f (Definition 8) then there
exist a (τ, ϵ)-unbreakable implementation of S.

Proof: If WBf−1 is such implementation (τ, ϵ)-unbreakable, build the implementation of S by
replacing any call to f−1 by a call to WBf−1 and note this implementation WBS. Now, if any
attacker A breaks the (τ, ϵ)-unbreakability , one can build an attacker A′ breaking WBf−1 by
simply building WBS and running A. This is absurd by unbreakability of WBf−1.

This result does not seems to be easily extendable to incompressibility. Indeed, it is not trivial
to obtain a compression of f−1 from a compression of S. However, for the usual "reasonable"
constructions (FDH, PSS, Feistel-Patarin,...) we still conjecture that the security of the one way-
function carries onto the complete signature algorithm.

Remark: There exist algorithms S that are easily compressible even if f has an incompressible
implementation. For instance, if we use full domain hash with a hash function of the form h ◦ f ,
trivial compression arises if h has a short description. This encourages to further the study of the
incompressibility of f ◦ g when f or g are incompressible.

4.5 Attack by Reduction to a Weaker HFE Instance

This paragraph only deals with HFE implementations with perturbations. If perturbations are used
on an implementation (section 3.5), one idea to perform an attack is to try to remove the pertur-
bation on the affine multiple construction, in the same way attackers try to remove perturbations
on public-keys for attacks in the black-box model. As we will focus the study the unbreakability
and incompressiblity of our challenge construction, we will focus on perturbations +̂ and (-,1). A
reduction for (-,2) can be made similarly to +̂.
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Reduction for (-,1) If we have an implementation perturbed with (-,1), we can remove the pertur-
bation - on the public-key by recovering the missing coordinates. We can fix the last a coordinates
to any constant and gather enough signatures to solve a linear system with the coefficients of the
monomials of our missing coordinates as unknowns. Experimentally, this allows us to recover vector
space of dimension a that contains these equations, which is sufficient to recover an equivalent HFE
public key. Since there are

(
n
2

)
unknowns, the cost of this attack is O(n2ω + n2 × τWB).

Remark 1: The time τWB can be increased by other used perturbations, and needs to be taken
into account for concrete security analysis.

Reduction (+̂) For the (+̂) perturbation, with the notations of section 3.5, notice that for the affine
multiples Ci of the polynomials Hi the only possible values of Q(x) are in Vi. The signatures from
Bi will satisfy:

δi∏
j=1

(Q(x) + vi,j) = 0

This product can then be interpolated by gathering signatures using the same method as for the
reduction for (−, 1). Then, a recovery of Q(x) can be attempted. In our setting, the exact values
vi,j are unknown. To the best of our knowledge, recovering Q(x) can only be made by factoring∏ϵi

j=1(Q(x) + vi,j) = 0, which is hard for any instance we will use later.

Remark 2: Note that these equations can be gathered for any HFE+̂ instance in black-box for
Vi = Im(Q). This means that any algorithm solving this problem if #Vi = 2t can break the
corresponding HFE+̂ instance. Even if this perturbation is young, no attack of this kind has been
reported by the authors of [18] which confirms our security analysis.

4.6 The Implementation as a (daff + 1)-IP1S Problem

To analyse unbreakability and incompressibility directly on the affine multiple, we rely on two
properties of the polynomials describing our white-box implementation. The first will be the key
recovery of the underlying (daff+1)-IP1S instance. The IP (Isomorphism of Polynomials) problem –
studied in papers such as [36, 38, 9, 29] – has been introduced to explore the security of multivariate
cryptography in general. We quickly recall that for an integer d, an d-IP instance is defined by a
system of polynomials g = b ◦ f ◦ a where F is a known system of n polynomials in n variables, and
hidden a and b affine bijective n-by-n transformations. To solve the IP instance, one needs to find
a, b. When there is only one secret b, the instance is usually called a IP instance with one secret
abbreviated d-IP1S.

The second one is a variant of the regular IP1S problem that we call “incompressibility of IP
instances”. We detail these two properties, how they are linked to our problem and how well studied
they are. For this section, let A be an affine multiple of any HFE instance with perturbations (p),
(-,1), (-,2) or (+̂).

Secret recovery on (daff + 1)-IP1S Let us first recall that our white-box implementation is
composed of the n polynomials Ãi and a deterministic generic way to evaluate them (compute all
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the monomials then sum them up). The polynomials Ãi are defined by a composition with two
affine transformations S and T such that:

Ãi(x1, ..., xn, y1, ..., yn) = Ai(S(x1, ..., xn), T
−1(y1, ..., yn))

It is then obvious that Ãi is an instance of a (daff + 1)-IP1S problem over 2n variables, with Ai

as the known polynomials and a block-affine transformation composed of S and T . This problem
has a structured secret, so it is not generic, but we do not know any other attack against it (as an
IP problem) than the generic ones. To the best of our knowledge, the best generic attack on 3−IP1S
with affine secrets has complexity O(n6qn) ([9]). This means that the best known attack against
3−IP1S instances is exponential in n . For our instances, (daff + 1) ≥ 3, these pieces of evidence
allow us to conjecture that our instances are secure for the desired security level.

Remark 1: For the perturbation (p), the secret S : Fn−p
2 → Fn

2 is not a bijection, this instance is
different from the one studied in general. However, since the projection variant is efficient against
key recovery for HFE instances, one can hope that it will help our IP instance to stand against
secret recovery for the same reasons.

Remark 2: For perturbations (−, 2) and (+̂) , the polynomial Ã are composite affine multiples,
but the same analysis can be made.

Incompressibility of IP1S instances The main goal of this part is to highlight a specificity of
multivariate cryptography in general that will help us to prove the incompressibility of our white-
box construction. To do so, we formalize a new problem around IP instances, and analyse it on our
instance (Ãi)i∈J1,nK.

We define the (σ,τ)-incompressibility of an IP instance with known polynomials (Pi)i∈J1,mK:
– Draw at random two secret affine transformations S, T in AFFn(F2)
– The adversary A is given an IP instance (P̃i)i∈J1,mK composed of (Pi)i∈J1,mK, S and T

– The adversary A returns a program P that allows to evaluate (P̃i)i∈J1,mK for every element
(F2)

n

– The adversary A wins if size(P) ≤ σ

Definition 8. Let (P̃i)i∈J1,mK be an IP instance with polynomials in n variables over F2, with
known polynomials (Pi)i∈J1,mK and secrets S, T and let A be an adversary. We say that (P̃i)i∈J1,mK
is (σ,τ ,ϵ)-incompressible if there is no adversary A that wins the σ-incompressibility game with
probability ϵ and Time(A)+Time(P) < τ .

Remark 1: We could also consider, similarly to the incompressibility for white-box, that A does
not have to agree with (Pi)i∈J1,mK on all inputs or that it can be probabilistic. However, known
attacks do not use this flexibility.

It is well known that, for truly random polynomials, compressibility is not possible by definition
in the sense of Kolmogorov, even with an unbounded computation power. In contrast, in our context,
a compressed version of the Ãi polynomials is obviously given if we can recover the secrets S
and T . This problem of secret recovery on an IP instance corresponds to the extreme case σ =
size(S)+ size(T ) in Definition 4, and boils down to the unbreakability problem, for which the best
known attacks require large computational efforts - see paragraph above, about Secret recovery on
(daff + 1)-IP1S. In the intermediate cases size(S) + size(T ) < σ ≤ size(Pi), to the best of our
knowledge, no attack has been found in the literature.
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4.7 Generic White-Box Attacks on Multivariate Cryptography

In the literature, generic automated attacks are proven to be very efficient against the state-of-
the-art white-box implementations of block-ciphers due to the techniques used (i.e. masking or
internal encodings for instance). These attacks include Differential Computation Analysis (DCA)
and Differential Fault Analysis (DFA) as their most potent representatives. In this section we argue
against their usefulness against our technique.

The main point of this section is to understand how IP instances are secure against these attacks,
even if they are used in HFE schemes and hence have a trapdoor. A first example of this is how
HFE public keys are not vulnerable to DPA attacks or their white-box DCA counterpart. Indeed,
even if the inversion of the public key can be attacked because it decomposes the inversion of P into
the inversion of S, T and F separately, the public key itself is not vulnerable against DCA, even
if it contains the complete key (S, T ). This is due to the structure of the IP problem. Indeed, all
the bits of S and T are diffused by polynomial composition into the coefficients of the public key
P . This means that unless a specific computation depending on few key bits is found on a specific
instance, the probability is negligible that a “nice” target exists for generic white-box attacks, as
the complexity of DCA is exponential in the number of key bits on which the target depends. The
state of the art HFE security ignores these attacks for such reasons. For DFA, it is easy to make
faults on the evaluation of P , but any evaluation of any function depending on the polynomials’
coefficients of the public is already allowed to solve IP and hence does not provide new information.
This is a huge difference compared to state-of-the-art targets of these attacks, which usually are
S-Boxes in SPN schemes, and most often specifically those of the AES algorithm.

For our implementation, the affine multiple structure allows to diffuse S and T into A, in the
same way they are diffused into the public key. Unless a specific relation is found for this particular
instance, the DCA has no more chances to succeed than the ones targeting the public key. The same
argument also stands for DFA. In summary, such a DCA-like (resp. DFA-like) attack is not expected
to be able to circumvent the similar hard-to-solve algebraic problem on which the algorithm’s black-
box security relies.

Remark 1: We can think of the following factorization-flavoured analogy. Assume that an attacker
is given an RSA public key. Since n depends on the secrets primes p and q, one could wonder if
DCA (resp. DFA) could be applied to n (or to a computation making use of n) to recover the secret
elements p and q. However, it is also easy to see that in this case the algebraic complexity of the
bits of n (as functions of the bits of p and q) quickly gets so high that this kind of DCA (resp. DFA)
strategy is not relevant here.

4.8 Conclusion of the Analysis of Security

In the sections above, we considered all the known attacks in the white-box context. The conclusion
of the analysis is that, with the best of our knowledge, none of these attacks is able to retrieve the
secret key (unbreakability) nor to compress the implementation (incompressibility). Nevertheless,
we are able to formulate the security of our white-box implementation as a set of two conjectures,
explicitly stating the links between the (white-box) security of our implementation and natural
hypotheses about well-known objects of multivariate cryptography (HFE, modifiers, IP1S problem,
affine multiple).
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Unbreakability Conjecture:

Let P be a HFE public key with modifiers chosen among −, p and +̂ . Let WBHFE be the white-
box implementation of P−1 and A an associated composite affine multiple with corresponding
perturbations. Let ϵ < 1 be a small probability and λ be our security level. If

1. The HFE instance associated to the public key P is secure against key recovery in the black-box
model up to security level λ.

2. The knowledge of A does not help to remove modifiers from P (Section 4.2) in less than 2λ

operations.
3. The affine multiple A is (2λ,ϵ)-unbreakable as a (daff + 1)-IP1S instance. (Section 4.3)

then the implementation WBHFE of the primitive P−1 is (2λ,ϵ)-unbreakable in the white-box
model.

Remark 1: The first point of this conjecture is trivial if we want our HFE instance to be of any
use. However, as we will see in section 5, this is an important dimensioning parameter to optimize
the implementation size. This is why we make it part of the conjecture.

Incompressibility Conjecture:

Let P be a HFE public-key with modifiers chosen among −, p and +̂ . Let WBHFE be the white-
box implementation of P−1 and A an associated composite affine multiple with corresponding
perturbations. Let ϵ < 1 be a small probability and λ be our security level. If :

1. The HFE instance associated to the public-key P is secure against key recovery in the black-box
model up to security level λ.

2. The knowledge of A does not help to remove modifiers from P (Section 4.2) in less than 2λ

operations.
3. The affine multiple A is (σWB ,2λ,ϵ)-incompressible as a (daff + 1)-IP1S instance. (Section 4.3)

then the implementation WBHFE of the primitive P−1 is (σWB ,2λ,ϵ)-incompressible in the white-
box model.

Remark 2: This conjecture is very similar to the unbreakability one. This is due to the fact
that the only compression we know from the public key is key recovery.

Of course, proving this conjecture still requires new insights, in particular to clarify the deep
algebraic links between the polynomial systems arising from A(x, y) on the one hand, and from
P−1 on the other hand. However, we believe this paves the way for a better understanding of the
incompressibility property, which up to now could be formally verified only for white-box imple-
mentations of symmetric cryptosystems in very restricted models (see the proof of incompressibility
of an RSA-like symmetric encryption scheme in [14], using an Ideal Group Model).

5 Challenge Implementation

In this section, we propose an instance close to C∗+̂− for our challenge implementation. For more
details about C∗, please refer to [33, 32].
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In this section, the instance includes the perturbations +̂ and −. To do so, we include pertur-
bations (+̂) and (−, 1) in the affine multiple. This means that the implementation is composed of
the composite affine multiples of the polynomials Hi:

Hi(x, y) =

δi∏
j=1

(y + vi,j − F (x))

and the last a coordinates of y are chosen at random for signing. We will choose internal
polynomials of the form F = x3 +Ax2, thus close to C∗.

Security analysis The black-box security of this unusual instance can be checked using attacks of
section 2.2: our instance needs to stand against direct inversion with Gröbner bases and key-recovery
rank attacks, hence the high value of t. The affine multiple attack is not applicable to public keys
with +̂ and −.

For white-box security, according to the conjecture, our instance needs to stand against attacks
on daff-IP1S instances of section 4.4, i.e. we only need to ensure that the attack of section 4.3 cannot
be used. To do so, we take δi = 3 so that the polynomial

δi∏
j=1

(Q(x) + vi,j) = 0

is not linear in Q(x).

Parameter Choices To reduce the affine degree, we choose polynomials F of the form x3 + Ax2,
A ∈ Fn

2 and take ϵi = 3. Indeed, with these parameters, we get affine multiples with daff = 3. We
then optimize n, t and a for the desired level of security.

Target (n, d, t, a) log2(size((Ci)) CG CR

Smallest for λ = 80 (85,2,9,5) 29.5 82.4 80.3
Smallest for λ = 90 (96,2,11,6) 30.3 106.5 91.3
Smallest for λ = 128 (132,2,18,4) 32.6 138.3 128.9

Table 2. Set parameters daff, a, t and n which satisfies a particular security level λ. The value log2(size(Ci))
is the corresponding log2 of size of an affine multiple in bits. The values CG and CR are the log2 of the
complexity of respectively best Gröbner basis attacks and best rank attacks

Remark : A signature can be computed if its image through Q lies in Vi. This means that a
message drawn at random will be signed with roughly probability 3

2t . This probability is quite low
but this remark can be used to have a smaller signature algorithm in the white-box model while
not changing the public-key and the verification algorithm.

Challenge: To motivate the cryptanalysis of our technique, we propose a challenge implementation
corresponding to the line (85, 2, 9, 5) on the previous table. The code in Sage is available at https:
//github.com/p-galissant/WBHFE. It contains the public-key, one affine multiple and resources
to manipulate them.

https://github.com/p-galissant/WBHFE
https://github.com/p-galissant/WBHFE
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