White-Box Implementation Techniques for the HFE family

Pierre Galissant, Louis Goubin

Université de Versailles-St-Quentin-en-Yvelines

UFR des Sciences CAMPUS DE VERSAILLES

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

 $\underset{0 \bullet 000}{\text{White-Box Model}}$

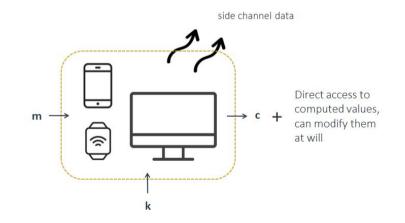
Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

The White-Box Model

 $\, \hookrightarrow \,$ Introduced by Chow et al. in 2002



The White-Box Model (2)

Some Context

- $\, \hookrightarrow \,$ Mainly focused on the symmetric setting
- $\, \hookrightarrow \,$ WhiBox contest 17 and 19 : All AES implementations were broken
- $\, \hookrightarrow \,$ Mainly based on masking or tables based solutions

For the Public-Key Setting

 \hookrightarrow WhiBox 21 and 24 contest on ECDSA : all implementations quickly broken

 $\, \hookrightarrow \,$ Almost nothing on the public-key setting

Framework

White-Box Compiler

A white-box compiler C is probabilistic algorithm that on the input of a keyed-algorithm A and a key $k \in K$, outputs an implementation of A_k noted $C_A(k)$ that aims to achieve security properties in the white-box model.

Security Notions

- $\, \hookrightarrow \,$ Unbreakability : "It should be hard to extract the key from the targeted code"
- \hookrightarrow Incompressibility : "It should be hard to produce a smaller code that is functionally equivalent to the target"

White-Box	Model
00000	

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Incompressibility

1. Draw at random a key k in private keyspace K

- 1. Draw at random a key k in private keyspace K
- 2. The adversary \mathcal{A} gets the program $\mathcal{C}_A(k)$ from the compiler

- 1. Draw at random a key k in private keyspace K
- 2. The adversary \mathcal{A} gets the program $\mathcal{C}_A(k)$ from the compiler
- 3. The adversary \mathcal{A} returns a program \mathcal{P} knowing $\mathcal{C}_A(k)$

- 1. Draw at random a key k in private keyspace K
- 2. The adversary $\mathcal A$ gets the program $\mathcal C_A(k)$ from the compiler
- 3. The adversary ${\cal A}$ returns a program ${\cal P}$ knowing ${\cal C}_A(k)$
- 4. The adversary \mathcal{A} succeeds if \mathcal{P} and $\mathcal{C}_A(k)$ are equivalent and $size(\mathcal{P}) < \sigma$.

- 1. Draw at random a key k in private keyspace K
- 2. The adversary $\mathcal A$ gets the program $\mathcal C_A(k)$ from the compiler
- 3. The adversary $\mathcal A$ returns a program $\mathcal P$ knowing $\mathcal C_A(k)$
- 4. The adversary \mathcal{A} succeeds if \mathcal{P} and $\mathcal{C}_A(k)$ are equivalent and $size(\mathcal{P}) < \sigma$.

Definition

We define the probability of the adversary A to succeed in the σ -incompressibility game by:

$$Succ_{\mathcal{A},\mathcal{C}_A} := \mathbb{P}[k \leftarrow K; \mathcal{P} = \mathcal{A}(\mathcal{C}_A(k)); \mathcal{P} \approx \mathcal{C}_A(k); (size(\mathcal{P}) < \sigma)]$$

We say that C_A is (σ, τ, ϵ) -incompressible if for any adversary A, Time(A)+Time $(\mathcal{P}) < \tau$ implies $Succ_{A,C_A} \leq \epsilon$.

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Multivariate Cryptography

General Idea

$$\hookrightarrow$$
 Public Key : $\begin{cases} P_1(x_1, \dots, x_n) \\ \vdots \\ P_m(x_1, \dots, x_n) \end{cases}$

over a field $\mathbb F,$ mostly of degree 2

Implementation of HFE

Multivariate Cryptography

General Idea

$$\rightarrow \text{ Public Key}: \begin{cases} P_1(x_1, \dots, x_n) \\ \vdots \\ P_m(x_1, \dots, x_n) \end{cases} \text{ over a field } \mathbb{F}, \text{ mostly of degree 2} \end{cases}$$

 $\begin{array}{l} \hookrightarrow \mbox{ Given the public key and } (y_1,...,y_n) \in \mathbb{F}^n, \mbox{ it is hard to compute } (x_1,...,x_n) \in \mathbb{F}^n, \\ \mbox{ s.t.} \begin{cases} P_1(x_1,\ldots,x_n) = y_1 \\ \vdots & \dots \\ P_m(x_1,\ldots,x_n) = y_m \end{cases} \end{array}$

Implementation of HFE

Multivariate Cryptography

General Idea

$$\rightarrow \text{ Public Key}: \begin{cases} P_1(x_1, \dots, x_n) \\ \vdots \\ P_m(x_1, \dots, x_n) \end{cases} \text{ over a field } \mathbb{F}, \text{ mostly of degree 2} \end{cases}$$

 $\begin{array}{l} \hookrightarrow \mbox{ Given the public key and } (y_1,...,y_n) \in \mathbb{F}^n, \mbox{ it is hard to compute } (x_1,...,x_n) \in \mathbb{F}^n, \\ \mbox{ s.t.} \begin{cases} P_1(x_1,\ldots,x_n) = y_1 \\ \vdots & \dots \\ P_m(x_1,\ldots,x_n) = y_m \\ \end{array} \\ \mbox{ \cdots but given a secret-key, the inversion is easy.} \end{cases}$

Multivariate Cryptography (2)

- $\, \hookrightarrow \,$ For quadratic equations : the MQ problem is NP-hard problem
- $\, \hookrightarrow \,$ But with a trapdoor, so more cryptanalysis needed

Multivariate Cryptography (2)

- $\,\hookrightarrow\,$ For quadratic equations : the MQ problem is NP-hard problem
- $\, \hookrightarrow \,$ But with a trapdoor, so more cryptanalysis needed
- $\, \hookrightarrow \,$ Among the most famous multivariate public-key schemes:
 - Big Field
 - $\ast~C^{*}$ (Matsumoto and Imai, 1983)
 - * HFE (Hidden Field Equations, by Patarin, 1996)
 - * GeMSS (Casanova et al. 2018)
 - Oil and Vinegar
 - * UOV (Unbalanced Oil and Vinegar, by Goubin, Kipnis, Patarin, 1999)
 - * Rainbow (Ding, Schmidt, 2005)
 - New candidates to NIST PQC like VOX,PROV,...

Multivariate Cryptography and HFE

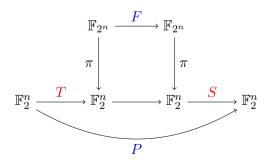
Implementation of HFE

Perspectives

HFE - (Hidden Field Equation)

Signature Algorithm described by Patarin (1996)

- $\,\, \hookrightarrow \,\, S, \, T$ affine bijections over $\mathbb{F}_2^n.$
- \hookrightarrow The public-key is $P = S \circ \pi \circ F \circ \pi^{-1} \circ T$.



Multivariate Cryptography and HFE

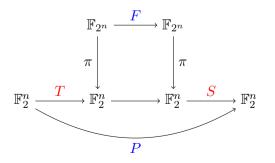
Implementation of HFE

Perspectives

HFE - (Hidden Field Equation)

Signature Algorithm described by Patarin (1996)

- $\, \hookrightarrow \, {\pmb F} \text{ of degree 2 over } {\mathbb F}_2^n \text{ Inverting } {\pmb F} \text{ is easy its degree } D \text{ is not too big.}$
- $\,\, \hookrightarrow \,\, S, \, T$ affine bijections over $\mathbb{F}_2^n.$ Inverting $S, \, T$ and π is easy
- \hookrightarrow The public-key is $P = S \circ \pi \circ F \circ \pi^{-1} \circ T$. Inverting P is hard



Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

The IP Problem and White-Box

Isomorphism of polynomials (IP Problem)

 \hookrightarrow Given $P = S \circ F \circ T$ and F systems of polynomials of degree 2 over a field \mathbb{F}_2 and secret S, T affine bijections over \mathbb{F}_2^n

Implementation of HFE

The IP Problem and White-Box

Isomorphism of polynomials (IP Problem)

- \hookrightarrow Given $P = S \circ F \circ T$ and F systems of polynomials of degree 2 over a field \mathbb{F}_2 and secret S, T affine bijections over \mathbb{F}_2^n
- $\,\, \hookrightarrow \,\, \mathsf{Find} \,\, {S \over S} \,\, \mathsf{and} \,\, {T \over T}$

The IP Problem and White-Box

Isomorphism of polynomials (IP Problem)

- \hookrightarrow Given $P = S \circ F \circ T$ and F systems of polynomials of degree 2 over a field \mathbb{F}_2 and secret S, T affine bijections over \mathbb{F}_2^n
- \hookrightarrow Find S and T

Links with the White-Box Model

 $\,\hookrightarrow\,$ Composition has "incompressibility" properties if F has succinct representation

 $\, \hookrightarrow \,$ Similarly to C^* , $\pmb{F}=x^3$: $Size(\pmb{S}, \, \pmb{T})=2n^2$ and $Size(\pmb{P})=n\times \sigma(n,2)$

HFE - Perturbations

A Way to Enhance Security

- $\, \hookrightarrow \,$ The Projection Perturbation: Fix p coordinates of the public key
- $\, \hookrightarrow \,$ The Minus Perturbation: Remove a coordinates from the public key
- \hookrightarrow The Hat Plus perturbation: Add a quadratic form Q whose image is a vector space of dimension t:

$$Q(X) = \sum_{0 \le i \le t} \beta_i \times p_i(x_1, ..., x_n)$$

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

HFE - Black-Box Security

Black-Box Security

- \hookrightarrow Best Invertion through Gröbner Basis computation : $\mathcal{O}\left(\binom{n+d_{reg}}{d_{reg}}^{\omega}\right)$
- \hookrightarrow Best Key-Recovery : $\mathcal{O}\left(\left(n^2\binom{2d+2}{d}+n\binom{2d+2}{d}^2\right)^{\omega}\right)$, with $d=\lceil \log_2 D
 ceil$
- $\,\, \hookrightarrow \,\,$ Structural attacks : F is a monomial or F is only over \mathbb{F}_2

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Implementation of HFE

Our Contributions

1. We propose the first white-box implementation technique for the HFE family

Implementation of HFE

Our Contributions

- 1. We propose the first white-box implementation technique for the HFE family
- 2. We reduce the unbreakability of our implementation to the study of a particular instance of the IP problem

Implementation of HFE

Our Contributions

- 1. We propose the first white-box implementation technique for the HFE family
- 2. We reduce the unbreakability of our implementation to the study of a particular instance of the IP problem
- 3. We revisit the notion of incompressibility in the public-key setting and state a precise conjecture regarding the incompressibility of our construction

Our Contributions

- 1. We propose the first white-box implementation technique for the HFE family
- 2. We reduce the unbreakability of our implementation to the study of a particular instance of the IP problem
- 3. We revisit the notion of incompressibility in the public-key setting and state a precise conjecture regarding the incompressibility of our construction
- 4. We propose a challenge implementation to motivate the study of our implementation technique

Starting Point: Affine Multiple Attack

A Structural Remark

 $\,\, \hookrightarrow \,\,$ Generalization of Patarin's attack on C^* over \mathbb{F}_2^n :

$$F(x) = x^3 = y \implies xy^2 = x^4y$$

 $\, \hookrightarrow \,$ Frobenius is linear, we get n equations for $P = S \circ F \circ T$:

$$\sum a_{i,j} x_i y_j + \sum b_i x_i + \sum c_j y_j + d = 0$$

Starting Point: Affine Multiple Attack

A Structural Remark

 $\,\, \hookrightarrow \,$ Generalization of Patarin's attack on C^* over \mathbb{F}_2^n :

$$F(x) = x^3 = y \implies xy^2 = x^4y$$

 $\, \hookrightarrow \,$ Frobenius is linear, we get n equations for $P = S \circ F \circ T$:

$$\sum a_{i,j}x_iy_j + \sum b_ix_i + \sum c_jy_j + d = 0$$

Affine Multiple Attack to invert P

- 1. Get pairs (x, P(x)) to solve a linear system in $a_{i,j}, b_i, c_j$ and d
- 2. Once these coefficients are known, plugging y allow the recovery of x by Gaussian reduction.

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Affine Multiple Attack (2)

Definition

Let $F \in \mathbb{F}_{2^n}[x]$. The polynomial $A(x, y) \in \mathbb{F}_{2^n}[x, y]$ is said to be an affine multiple of F if $A(x, y) = 0 \mod (F(x) - y)$ and A is \mathbb{F}_2 -linear in x.

 $\, \hookrightarrow \, d_{\it aff} :=$ maximum Hamming weight of the monomials in y in the polynomial A(x,y).

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Affine Multiple Relations

Existence

The vector space $\mathbb{F}_{2^n}(y)[x]/_{(P(x)-y)}$ of dimension D = deg(F) over $\mathbb{F}_{2^n}(y)$. The $D + 1 \mathbb{F}_{2^n}$ -linear polynomials $(1, x^{2^0}, x^{2^1}, ..., x^{2^{D-1}})$ are linearly dependent

We now need an algorithm to compute the dependency relation :

$$a + \sum_{i=0}^{D-1} a_i x^{2^i} = 0 \mod (P(x) - y), \quad a, a_o, \dots, a_{D-1} \in \mathbb{F}_{2^n}(y)$$

Affine Multiple Relations (2)

In practice

 \hookrightarrow Compute the $b_{i,j}$ such that $x^{2^i} = \sum_{j=0}^{D-1} b_{i,j} x^j \mod (P(x) - y)$. This translates to the relations:

$$a + \sum_{i=0}^{D-1} a_i \sum_{j=0}^{D-1} b_{i,j} x^j = 0$$

$$\begin{pmatrix} 1 & b_{0,0} & \cdots & b_{D-1,0} \\ 0 & b_{0,1} & \cdots & b_{D-1,1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{0,D-1} & \cdots & b_{D-1,D-1} \end{pmatrix} \times \begin{pmatrix} a \\ a_0 \\ \vdots \\ a_{D-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(and normalize to get the a_k over $\mathbb{F}_{2^n}[y]$)

Affine Multiple Relations (3)

Prohibitive Costs for Standard HFE

Essentially, we perform modular reductions and solve a linear system over $\mathbb{F}_{2^n}(y)$. The complexity is then :

 $\mathcal{O}(M(n, 2^D)D^\omega)$

We need to focus on polynomials of small degree D.

Affine Multiple Relations (3)

Prohibitive Costs for Standard HFE

Essentially, we perform modular reductions and solve a linear system over $\mathbb{F}_{2^n}(y)$. The complexity is then :

$$\mathcal{O}(M(n, 2^D)D^\omega)$$

We need to focus on polynomials of small degree D.

Black-Box Security

 $\, \hookrightarrow \,$ Black-box security depends on F , and perturbations.

The Construction

WBHFE algorithm

- $\,\, \hookrightarrow \,\, {\sf Compute} \,\, A(x,y)$
- \hookrightarrow Compute the coordinates $A_i(x_1,...,x_n,y_1,...,y_n)$ (for $i \in [\![1,n]\!]$) of A through the isomorphism π
- $\,\hookrightarrow\,$ Compute the composition :

$$\tilde{\mathbf{A}}_{i}(x_{1},...,x_{n},y_{1},...,y_{n}) = A_{i}(S(x_{1},...,x_{n}),T^{-1}(y_{1},...,y_{n}))$$

 \hookrightarrow To get a preimage of y, P(x) = y, plug $y = (y_1, ..., y_n)$ into the \tilde{A}_i to get a linear system in $x = (x_1, ..., x_n)$

Adding Perturbations

Projection

 $\, \hookrightarrow \,$ We simply project the coordinates on the affine multiple

Hat Plus and Minus

 \hookrightarrow We change the modulus ! For any integer $m_s > 0$ and split $Im(Q) = \bigcup_{i=1}^{m_s} V_i$ where $\#V_i = \delta_i \ge 2$. We set $V_i = \{v_{i,1}, ..., v_{i,\delta_i}\}$:

$$H_i(x) = \prod_{j=1}^{\delta_i} (y - F(x) - v_{i,j})$$

Size of the construction

Size of the WB Code

As we store the n polynomials \tilde{A}_i , which are of degree d_{aff} in y_i and linear in x_i , the size is upper bounded by :

 $n^2\sigma(n, d_{\text{aff}})$

Constraint

The size (and the running time) is exponential in d_{aff} : we need to minimize it !

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

White-Box Security

A conjecture for White-Box Security

 $\,\hookrightarrow\,$ Based on incompressibility of IP instances.

Usual White-Box Attacks

 $\, \hookrightarrow \,$ Can we assess the efficiency of DCA, DFA, etc .. ?

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Incompressibility of IP Instances

1. Draw at random two secrets S, T in $Aff_n(\mathbb{F}_2)$

Incompressibility of IP Instances

- 1. Draw at random two secrets S, T in $Aff_n(\mathbb{F}_2)$
- 2. The adversary \mathcal{A} is given an IP instance $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ composed of $(P_i)_{i \in [\![1,m]\!]}$, S and T

Incompressibility of IP Instances

- 1. Draw at random two secrets S, T in $Aff_n(\mathbb{F}_2)$
- 2. The adversary \mathcal{A} is given an IP instance $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ composed of $(P_i)_{i \in [\![1,m]\!]}$, S and T
- 3. The adversary \mathcal{A} returns a program \mathcal{P} that allows to evaluate $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ for every element $(\mathbb{F}_2)^n$

Incompressibility of IP Instances

- 1. Draw at random two secrets S, T in $Aff_n(\mathbb{F}_2)$
- 2. The adversary \mathcal{A} is given an IP instance $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ composed of $(P_i)_{i \in [\![1,m]\!]}$, S and T
- 3. The adversary \mathcal{A} returns a program \mathcal{P} that allows to evaluate $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ for every element $(\mathbb{F}_2)^n$
- 4. The adversary ${\mathcal A}$ wins if $size({\mathcal P}) < \sigma$

Perspectives

Incompressibility of IP Instances

- 1. Draw at random two secrets S, T in $Aff_n(\mathbb{F}_2)$
- 2. The adversary \mathcal{A} is given an IP instance $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ composed of $(P_i)_{i \in [\![1,m]\!]}$, S and T
- 3. The adversary \mathcal{A} returns a program \mathcal{P} that allows to evaluate $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ for every element $(\mathbb{F}_2)^n$
- 4. The adversary ${\mathcal A}$ wins if $size({\mathcal P}) < \sigma$

Definition

Let $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ be an IP instance with polynomials in n variables over \mathbb{F}_2 , with known polynomials $(P_i)_{i \in [\![1,m]\!]}$ and secrets S, T and let \mathcal{A} an adversary. We say that $(\tilde{P}_i)_{i \in [\![1,m]\!]}$ is (σ, τ, ϵ) -incompressible if there is no adversary \mathcal{A} that wins the σ -incompressibility game with probability ϵ and $\operatorname{Time}(\mathcal{A}) + \operatorname{Time}(\mathcal{P}) < \tau$.

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Incompressibility of IP Instances (2)

What do we know about this problem ?

 $\, \hookrightarrow \,$ The instance is structured, in particular, it corresponds to a HFE public key

Incompressibility of IP Instances (2)

What do we know about this problem ?

- $\,\hookrightarrow\,$ The instance is structured, in particular, it corresponds to a HFE public key
- $\,\hookrightarrow\,$ Could be useful for multivariate keys, but not studied that much
- \hookrightarrow Best known attack is complete key recovery (i.e. unbreakability)
- $\, \hookrightarrow \,$ We use a variation where the central polynomial is of degree 3 or 4

Discussion on general attacks : DCA, DFA, ...

Multivariate Cryptography is nice for White-Box !

- $\, \hookrightarrow \,$ It diffuses entirely by composition : HFE public-keys are already IP instances
- $\hookrightarrow\,$ For combinatorial reasons, usual white-box attacks are not known to solve the IP problem

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Summary on Constraints

Black-Box Security from the State of the Art

- \hookrightarrow Best Invertion through Gröbner Basis computation : $\mathcal{O}\left(\binom{n+d_{reg}}{d_{reg}}^{\omega}\right)$
- \hookrightarrow Best Key-Recovery : $\mathcal{O}\left(\left(n^2\binom{2d+2}{d}+n\binom{2d+2}{d}^2\right)^{\omega}\right)$
- $\, \hookrightarrow \,$ Structural attacks : F is a monomial or F is only over \mathbb{F}_2

White-Box Size and Security

- $\, \hookrightarrow \,$ Minimize $d_{\textit{aff}}$ on affine multiples compatible with perturbations
- ightarrow Check the parameters against the best attacks in the white-box model

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Fixing Parameters for $\lambda = 80$

Nude HFE

$$ightarrow F = x^6 + Ax^5 + Bx^3$$
, $A, B \in \mathbb{F}_2^n$
 $ightarrow log(n) = 11.8$, $log(size) = 45.7$ (≈ 10 TB)

Variations of pC^{*-}

$$ightarrow F = x^3 + Ax^2, \ A \in \mathbb{F}_2^n$$

 $ightarrow n = 101, p = 12, a = 21$, $\log(size) = 30.5$ ($pprox 187 MB$

Variations of C^{*+-} (Challenge: github.com/p-galissant/WBHFE)

$$\begin{array}{l} \hookrightarrow \ F=x^3+Ax^2, \ A\in \mathbb{F}_2^n\\ \Rightarrow \ n=85, t=9, a=5 \ , \ log(size)=29.5 \ (\approx 93 \mathrm{MB}) \end{array}$$

Multivariate Cryptography and HFE

Implementation of HFE White-Box Security Fixing Parameters

Perspectives

Multivariate Cryptography and HFE

Implementation of HFE

Perspectives

Further understanding of affine multiples

- $\, \hookrightarrow \,$ Can we avoid exhaustive search to find interesting affine multiples ?
- $\, \hookrightarrow \,$ Can we extend this technique to other trapdoors ?

Polynomial Composition and White-Box

- $\, \hookrightarrow \,$ Can we improve our understanding of the compression of IP instances ?
- \hookrightarrow Can we use composition problems for other white-box implementations ?

Thank You