Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0000	

Towards package opening detection at power-up by monitoring thermal dissipation

G. Chancel - J. Toulemont - F. Mailly - P. Maurine - P. Nouet

2025/04/04

イロト イヨト イヨト

1/22

INTRODUCTION

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ Q (? 2/22)

Introduction 0●00	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion

Many hardware attacks either:

・ロト ・ 部 ト * 臣 ト * 臣 * 臣 * つ へ ??
3/22

Towards package opening detection at power-up by monitoring thermal dissipation

Introduction ○●○○	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

イロト イヨト イヨト

3

3/22

Context

Many hardware attacks either:

- Require a backside package opening:
 - 1. BBI, micro-probing
 - 2. LFI, photo-emission

Introduction ○●○○	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

イロト イヨト イヨト

3

3/22

Context

Many hardware attacks either:

- Require a backside package opening:
 - 1. BBI, micro-probing
 - 2. LFI, photo-emission
- Are more efficient after a frontside package opening:
 - 1. EMFI
 - 2. Side-channel attacks/analysis

Introduction ○●○○	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

-

3/22

Context

Many hardware attacks either:

- Require a backside package opening:
 - 1. BBI, micro-probing
 - 2. LFI, photo-emission
- Are more efficient after a frontside package opening:
 - 1. EMFI
 - 2. Side-channel attacks/analysis

Observations:

- Package removal is ont considered a significant problem
- May be a legacy of smart-cards where the package is limited

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Countermeasures:

Many countermeasureas exist against physical attacks:

(ロ) (部) (主) (主) (三) (22)

Towards package opening detection at power-up by monitoring thermal dissipation

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

4/22

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

Sensors to detect EMFI, BBI or LFI attempts

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

メロト スポト メラト メラト 一日

4/22

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

- Sensors to detect EMFI, BBI or LFI attempts
- Nano-pyramids or TSV to detect substrate thinning/intrusion

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

イロト イヨト イヨト

3

4/22

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

- Sensors to detect EMFI, BBI or LFI attempts
- Nano-pyramids or TSV to detect substrate thinning/intrusion
- Embedded coils to detect EM probes for SCA or EMFI

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

イロト イボト イヨト イヨト

3

4/22

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

- Sensors to detect EMFI, BBI or LFI attempts
- Nano-pyramids or TSV to detect substrate thinning/intrusion
- Embedded coils to detect EM probes for SCA or EMFI

Observations:

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

э

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

- Sensors to detect EMFI, BBI or LFI attempts
- Nano-pyramids or TSV to detect substrate thinning/intrusion
- Embedded coils to detect EM probes for SCA or EMFI

Observations:

Countermeasures focus on specific attacks

Introduction 00●0	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

-

Context

Countermeasures:

Many countermeasureas exist against physical attacks:

- Sensors to detect EMFI, BBI or LFI attempts
- Nano-pyramids or TSV to detect substrate thinning/intrusion
- Embedded coils to detect EM probes for SCA or EMFI

Observations:

- Countermeasures focus on specific attacks
- Often, the attacks have already been carried out

Introduction	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - りへぐ

5/22

Context

Trends:

Towards package opening detection at power-up by monitoring thermal dissipation

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

Security spreads to many applications

Introduction	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion

イロト イボト イヨト イヨト

3

5/22

Context

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure
- Microcontrollers (IoT), SoCs (smartphones, laptopts), face physical threats

(日) (四) (日) (日) (日)

5/22

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure
- Microcontrollers (IoT), SoCs (smartphones, laptopts), face physical threats

メロト メポト メラト メラト 一日

5/22

> SoC and microcontroller (μ cu) packages ensure thermal dissipation

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure
- Microcontrollers (IoT), SoCs (smartphones, laptopts), face physical threats

メロト メポト メヨト メヨト 二日

5/22

- > SoC and microcontroller (μ cu) packages ensure thermal dissipation
- Most SoCs and µcu embeds one or more temperature sensors

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure
- Microcontrollers (IoT), SoCs (smartphones, laptopts), face physical threats

メロト メポト メヨト メヨト 二日

- > SoC and microcontroller (μ cu) packages ensure thermal dissipation
- Most SoCs and µcu embeds one or more temperature sensors

Idea:

> Are temperature sensors exploitable to check IC package integrity?

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

Trends:

- Security spreads to many applications
- Not only smart-cards have to be secure
- Microcontrollers (IoT), SoCs (smartphones, laptopts), face physical threats

(日) (四) (日) (日) (日)

- > SoC and microcontroller (μ cu) packages ensure thermal dissipation
- Most SoCs and µcu embeds one or more temperature sensors

Idea:

- > Are temperature sensors exploitable to check IC package integrity?
- Let us explore this with a common μcu

THE DEVICE UNDER TEST

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	o●ooo	000000	0000	

The device under test

DUT

・ロ ・ ・ 一 戸 ・ ・ 三 ・ ・ 三 ・ ク へ で 7/22

Towards package opening detection at power-up by monitoring thermal dissipation

Introduction 0000	D.U.T. o●ooo	Package removal	Bypassing 0000	Conclusion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

7/22

The device under test

DUT

- STMicroelectronics STM32F439ZGT6
- Designed in a 90 nm bulk CMOS technology

Introduction 0000	D.U.T. o●ooo	Package removal	Bypassing 0000	Conclusion

(日) (四) (日) (日) (日)

7/22

The device under test

DUT

- STMicroelectronics STM32F439ZGT6
- Designed in a 90 nm bulk CMOS technology
- Embeds an ARM Cortex-M4 core and several cryptographic modules

Introduction 0000	D.U.T. o●ooo	Package removal	Bypassing 0000	Conclusion

イロト 不得下 イヨト イヨト 二日

7/22

The device under test

DUT

- STMicroelectronics STM32F439ZGT6
- Designed in a 90 nm bulk CMOS technology
- Embeds an ARM Cortex-M4 core and several cryptographic modules
- \blacktriangleright Embeds a temperature sensor: \pm 1.5 °C between [-40 °C, 125 °C]

Introduction 0000	D.U.T. o●ooo	Package removal	Bypassing 0000	Conclusion

The device under test

DUT

- STMicroelectronics STM32F439ZGT6
- Designed in a 90 nm bulk CMOS technology
- Embeds an ARM Cortex-M4 core and several cryptographic modules
- Embeds a temperature sensor: \pm 1.5 °C between [-40 °C, 125 °C]
- Embeds calibration values to mitigate process variation: TS_CAL1, TS_CAL2:

$$T = \frac{80}{TS_{CAL1} - TS_{CAL2}} \cdot (TS - TS_{CAL1}) + 30 \quad ^{\circ}C \tag{1}$$

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ・ ・ つ へ の

7/22

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

8/22

► LQFP144

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

8/22

Package characteristics:

- ► LQFP144
- \blacktriangleright Embedded heatsink on the backside \rightarrow θ_{F} >> θ_{B}

3

8/22

Package characteristics:

- LQFP144
- \blacktriangleright Embedded heatsink on the backside \rightarrow θ_{F} >> θ_{B}
- Removing either frontside or backside changes θ_F or θ_B

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

8/22

Package characteristics:

- LQFP144
- \blacktriangleright Embedded heatsink on the backside \rightarrow θ_{F} >> θ_{B}
- Removing either frontside or backside changes θ_F or θ_B
- What are the effects of the package on thermal dissipation?

Introduction 0000	D.U.T. 000●0	Package removal	Bypassing 0000	Conclusion

3

9/22

IC thermal behavior

First experiment

- Compare an intact IC with frontside and backside opened ones
- Periodic FLASH memory write operation and idle state (180 s each)

Introduction 0000	D.U.T. 000●0	Package removal	Bypassing 0000	Conclusion

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

9/22

IC thermal behavior

First experiment

- Compare an intact IC with frontside and backside opened ones
- Periodic FLASH memory write operation and idle state (180 s each)

Introduction 0000	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion

IC thermal behavior

First experiment

- Compare an intact IC with frontside and backside opened ones
- Periodic FLASH memory write operation and idle state (180 s each)

Conclusion:

Temperature changes:

- Are fast whatever the package
- Are limited with an intact or frontside opened IC
- Are faster and stronger with a backside opened IC

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

-

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	0000●	000000	0000	

IC thermal behavior: power-up temperature transients

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	0000●	000000	0000	

IC thermal behavior: power-up temperature transients

Towards package opening detection at power-up by monitoring thermal dissipation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

10/22

IC thermal behavior: power-up temperature transients

・ロッ ・雪 ・ ・ ヨ ・

3

10/22

Question?

Is it possible to check the backside package integrity by checking the value of β_1

イロト イポト イヨト イヨト

3

10/22

PACKAGE REMOVAL EXPERIMENTAL RESULTS

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0●0000	0000	

12/22

β_1 measurements across 13 circuits

Package integrity verification process ightarrow 13 devices (all units in °C/s)

IC n°	$\bar{\beta_1}$	σ_{β_1}	$\bar{R^2}$	σ _R 2	Backside
25	0.931	0.229	0.011	0.005	Closed
3	1.405	0.145	0.060	0.015	Closed
12	1.819	0.204	0.180	0.085	Closed
6	2.183	0.191	0.080	0.012	Closed
2	2.503	0.322	0.174	0.146	Closed
26	2.970	0.160	0.057	0.006	Closed
1	3.433	0.159	0.093	0.08	Opened
9	3.965	0.167	0.336	0.021	Opened
10	4.341	0.193	0.144	0.100	Opened
7	4.567	0.137	0.278	0.023	Opened
8	4.843	0.222	0.232	0.086	Opened
4	6.351	0.149	0.437	0.078	Opened
11	6.539	0.237	0.385	0.096	Opened

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0●0000	0000	

β_1 measurements across 13 circuits

Package integrity verification process ightarrow 13 devices (all units in °C/s)

IC n°	$\bar{\beta_1}$	σ_{β_1}	$\bar{R^2}$	σ _R 2	Backside
25	0.931	0.229	0.011	0.005	Closed
3	1.405	0.145	0.060	0.015	Closed
12	1.819	0.204	0.180	0.085	Closed
6	2.183	0.191	0.080	0.012	Closed
2	2.503	0.322	0.174	0.146	Closed
26	2.970	0.160	0.057	0.006	Closed
1	3.433	0.159	0.093	0.08	Opened
9	3.965	0.167	0.336	0.021	Opened
10	4.341	0.193	0.144	0.100	Opened
7	4.567	0.137	0.278	0.023	Opened
8	4.843	0.222	0.232	0.086	Opened
4	6.351	0.149	0.437	0.078	Opened
11	6.539	0.237	0.385	0.096	Opened

Conclusion

 Backside opened ICs show a higher average β₁ value, of around 2.89 °C/s

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

12/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0●0000	0000	

β_1 measurements across 13 circuits

Package integrity verification process ightarrow 13 devices (all units in °C/s)

IC n°	$\bar{\beta_1}$	σ_{β_1}	$\bar{R^2}$	σ _R 2	Backside
25	0.931	0.229	0.011	0.005	Closed
3	1.405	0.145	0.060	0.015	Closed
12	1.819	0.204	0.180	0.085	Closed
6	2.183	0.191	0.080	0.012	Closed
2	2.503	0.322	0.174	0.146	Closed
26	2.970	0.160	0.057	0.006	Closed
1	3.433	0.159	0.093	0.08	Opened
9	3.965	0.167	0.336	0.021	Opened
10	4.341	0.193	0.144	0.100	Opened
7	4.567	0.137	0.278	0.023	Opened
8	4.843	0.222	0.232	0.086	Opened
4	6.351	0.149	0.437	0.078	Opened
11	6.539	0.237	0.385	0.096	Opened

Conclusion

 Backside opened ICs show a higher average β₁ value, of around 2.89 °C/s

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

12/22

 σ_{β1} ranges from 0.15 to 0.3 °C/s, with an average of 0.193 °C/s

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0●0000	0000	

β_1 measurements across 13 circuits

Package integrity verification process ightarrow 13 devices (all units in °C/s)

IC n°	$\bar{\beta_1}$	σ_{β_1}	$\bar{R^2}$	σ _R 2	Backside
25	0.931	0.229	0.011	0.005	Closed
3	1.405	0.145	0.060	0.015	Closed
12	1.819	0.204	0.180	0.085	Closed
6	2.183	0.191	0.080	0.012	Closed
2	2.503	0.322	0.174	0.146	Closed
26	2.970	0.160	0.057	0.006	Closed
1	3.433	0.159	0.093	0.08	Opened
9	3.965	0.167	0.336	0.021	Opened
10	4.341	0.193	0.144	0.100	Opened
7	4.567	0.137	0.278	0.023	Opened
8	4.843	0.222	0.232	0.086	Opened
4	6.351	0.149	0.437	0.078	Opened
11	6.539	0.237	0.385	0.096	Opened

Conclusion

- Backside opened ICs show a higher average β₁ value, of around 2.89 °C/s
- σ_{β1} ranges from 0.15 to 0.3 °C/s, with an average of 0.193 °C/s
- Is β₁ stable with room temperature and power supply voltage?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

12/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00●000	0000	

Experimental results at fixed temperatures

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00●000	0000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

13/22

Experimental results at fixed temperatures

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00●000	0000	

Experimental results at fixed temperatures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

13/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00●000	0000	

Experimental results at fixed temperatures

 β_1 seems temperature independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

13/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0000	

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0000	

14/22

Experimental results at different voltages

β_1 seems voltage independent

Conclusion:

 \triangleright β_1 seems temperature independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

14/22

β_1 seems voltage independent

Conclusion:

- \triangleright β_1 seems temperature independent
- \triangleright β_1 seems supply voltage independent

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

14/22

Conclusion:

- \triangleright β_1 seems temperature independent
- \triangleright β_1 seems supply voltage independent

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

14/22

β₁ is stable over time

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0000	

Package integrity verification

What we propose

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0000●0	0000	

15/22

Package integrity verification

What we propose

► Characterize the IC with the interval $\beta_1 \pm 3 \cdot \sigma_{\beta_1}$ after manufacturing

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	0000●0	0000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

15/22

Package integrity verification

What we propose

- ► Characterize the IC with the interval $\beta_1 \pm 3 \cdot \sigma_{\beta_1}$ after manufacturing
- Store its calibration value like for TS_CAL1 and TS_CAL2

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0000	

Package integrity verification

What we propose

- ► Characterize the IC with the interval $\beta_1 \pm 3 \cdot \sigma_{\beta_1}$ after manufacturing
- Store its calibration value like for TS_CAL1 and TS_CAL2
- Check at every boot that β_1 is conform to the calibration value, i.e. \neg

$$\beta_1 \in [\overline{\beta_1} - 3 \cdot \sigma_{\beta_1}, \overline{\beta_1} + 3 \cdot \sigma_{\beta_1}]$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

15/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00000●	0000	

Further validation: comparing identical ICs

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○ 16/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	00000●	0000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

16/22

Further validation: comparing identical ICs (units in $^{\circ}C \cdot s^{-1}$)

	Intact package		Backside opening		
IC №	$\overline{\beta_1}$	$\overline{\sigma_{\beta_1}}$	$\overline{\beta'_1}$	$\overline{\sigma_{\beta_1'}}$	$\overline{\beta_1'} - \overline{\beta_1}$
2	1.400	0.125	7.470	0.063	6.070
3	1.608	0.147	5.899	0.089	4.291
6	1.636	0.112	5.642	0.068	4.006
28	2.095	0.195	4.097	0.077	2.002
26	2.970	0.175	5.817	0.084	2.847
25	3.101	0.453	5.660	0.059	2.559

Introduction D.U.T. Package removal Bypassing 0000 00000 00000 00000 00000 00000

Further validation: comparing identical ICs (units in $^{\circ}C \cdot s^{-1}$)

	Intact package		Backsi	Backside opening	
IC №	$\overline{\beta_1}$	$\overline{\sigma_{\beta_1}}$	$\overline{\beta'_1}$	$\overline{\sigma_{\beta_1'}}$	$\overline{\beta_1'} - \overline{\beta_1}$
2	1.400	0.125	7.470	0.063	6.070
3	1.608	0.147	5.899	0.089	4.291
6	1.636	0.112	5.642	0.068	4.006
28	2.095	0.195	4.097	0.077	2.002
26	2.970	0.175	5.817	0.084	2.847
25	3.101	0.453	5.660	0.059	2.559

Observation:

 As before, β₁ increases with backside opening

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

16/22

Introduction D.U.T. Package removal Bypassing

Further validation: comparing identical ICs (units in $^{\circ}C \cdot s^{-1}$)

	Intact package		Backside opening		
IC №	$\overline{\beta_1}$	$\overline{\sigma_{\beta_1}}$	$\overline{\beta'_1}$	$\overline{\sigma_{\beta_1'}}$	$\overline{\beta_1'} - \overline{\beta_1}$
2	1.400	0.125	7.470	0.063	6.070
3	1.608	0.147	5.899	0.089	4.291
6	1.636	0.112	5.642	0.068	4.006
28	2.095	0.195	4.097	0.077	2.002
26	2.970	0.175	5.817	0.084	2.847
25	3.101	0.453	5.660	0.059	2.559

Observation:

 As before, β₁ increases with backside opening

▶ In average
$$\rightarrow$$
 + 3.3 °C·s⁻¹

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

16/22

Introduction D.U.T. Package removal Bypassing

Further validation: comparing identical ICs (units in $^{\circ}C \cdot s^{-1}$)

	Intact package		Backside opening		
IC №	$\overline{\beta_1}$	$\overline{\sigma_{\beta_1}}$	$\overline{\beta'_1}$	$\overline{\sigma_{\beta_1'}}$	$\overline{\beta_1'} - \overline{\beta_1}$
2	1.400	0.125	7.470	0.063	6.070
3	1.608	0.147	5.899	0.089	4.291
6	1.636	0.112	5.642	0.068	4.006
28	2.095	0.195	4.097	0.077	2.002
26	2.970	0.175	5.817	0.084	2.847
25	3.101	0.453	5.660	0.059	2.559

Observation:

 As before, β₁ increases with backside opening

▶ In average
$$ightarrow$$
 + 3.3 °C·s⁻¹

 \triangleright β_1 distributions do not overlap

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

16/22

BYPASSING THE PACKAGE INTEGRITY VERIFICATION

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0●00	

・ロト・日本・モン・モン・ ヨー シタマ

18/22

Pre-heating the IC before power-up

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	0●00	

Pre-heating the IC before power-up

- Easy when unlimited boots are allowed
- Can be protected thanks to an initial temperature measurement

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

18/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	00●0	

Removable heat-sink

19/22

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000	000000	000●	

Removable heat-sink results (units in $^{\circ}C \cdot s^{-1}$)

	Intact package Backsic		de opening	e opening 32 mm long ro		
IC №	$\overline{\beta_1}$	$\overline{\sigma_{\beta_1}}$	$\overline{\beta_1'}$	$\overline{\sigma_{\beta_1'}}$	$\overline{\beta_1''}$	$\overline{\sigma_{eta_1''}}$
26	2.970	0.453	5.660	0.059	0.709	0.047
3	1.608	0.147	5.899	0.089	0.735	0.047
6	1.636	0.112	5.642	0.068	0.708	0.109
28	2.095	0.195	4.097	0.077	0.516	0.073
2	1.400	0.125	7.470	0.063	0.816	0.142
25	3.101	0.453	5.660	0.059	0.714	0.095

Average β_1 reduction of 5 °C·s⁻¹

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

20/22

CONCLUSION

◆□▶ < @ ▶ < E ▶ < E ▶ ○ 21/22</p>

Introduction	D.U.T.	Package removal	Bypassing	Conclusion
0000	00000		0000	○●

Conclusion

Intr 00	roduction	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

22/22

Conclusion

 \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers

Introduction	D.U.T. 00000	Package removal	Bypassing 0000	Conclusion 00

22/22

Conclusion

- \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages

Introduction 0000	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion ○●

22/22

Conclusion

- \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages
- Check package integrity against semi-invasive attacks
| Introduction
0000 | D.U.T.
00000 | Package removal
000000 | Bypassing
0000 | Conclusion
○● |
|----------------------|-----------------|---------------------------|-------------------|------------------|
| | | | | |
| | | | | |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

22/22

- \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages
- Check package integrity against semi-invasive attacks
- By using the embedded temperature sensor:
 - Monitoring thermal dissipation during boot

Introduction 0000	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion ○●

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

22/22

- \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages
- Check package integrity against semi-invasive attacks
- By using the embedded temperature sensor:
 - Monitoring thermal dissipation during boot
- Experimental results suggest it is feasible

Introduction 0000	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion ○●

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

22/22

- \blacktriangleright Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages
- Check package integrity against semi-invasive attacks
- By using the embedded temperature sensor:
 - Monitoring thermal dissipation during boot
- Experimental results suggest it is feasible
- Heatsink bypass compensation is tricky

Introduction 0000	D.U.T. 00000	Package removal 000000	Bypassing 0000	Conclusion ○●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

22/22

- Secure applications \rightarrow From smart-cards to microcontrollers
- $\blacktriangleright~\mu c \rightarrow$ Often encapsulated in plastic packages
- Check package integrity against semi-invasive attacks
- By using the embedded temperature sensor:
 - Monitoring thermal dissipation during boot
- Experimental results suggest it is feasible
- Heatsink bypass compensation is tricky
- > All of this with a sensor with a limited accuracy (\pm 1.5 °C)