

Robust and Reliable PUF Protocol Exploiting NMQ and the Neyman-Pearson Lemma

Neelam Nasir, Julien Béguinot, Wei Cheng, Ulrich Kühne, and Jean-Luc Danger

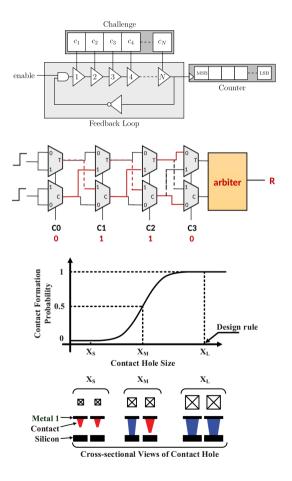
Télécom Paris - Institut Polytechnique de Paris

2025-04-05

Overview

• Background

- Physical Unclonable Functions
- The Loop PUF
- Reliability Evaluation
- Security Evaluation
- Novel Protocol
 - Taking Reliability into Account
 - Protocol
- Evaluation
- Conclusion


Background

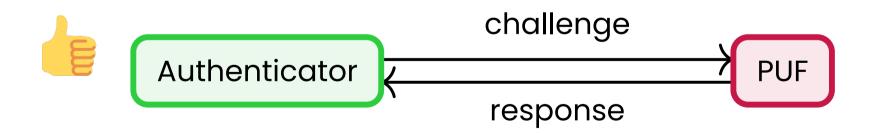
Physical Unclonable Functions

Physical Unclonable Functions Physical Unclonable Functions

- Unique device fingerprint
- Low-cost security anchor
- Avoids non-volatile memory
- Based on physical property
 - Delay
 - Resistance
 - Process variations
 - •••
- Cannot be copied by design
- Many different architectures

Physical Unclonable Functions Applications

1. Key derivation



Physical Unclonable Functions Applications

1. Key derivation

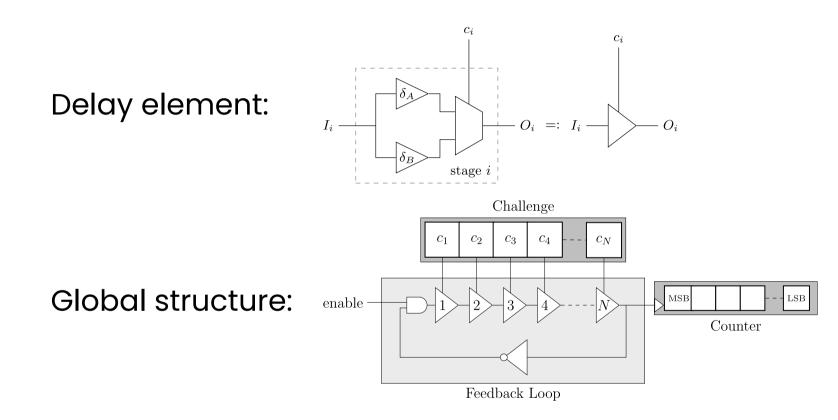
2. Challenge-response authentication

Physical Unclonable Functions Applications

1. Key derivation

2. Challenge-response authentication

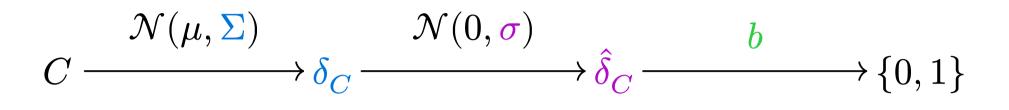
(Conflicting) design objectives for PUFs:


- Logic complexity
 - Should be small
- Performance
 - Should be fast
- Reliability
 - Should be insensitive to environmental conditions
 - Response should be stable over time
- Security
 - Should resist against attacks

Background

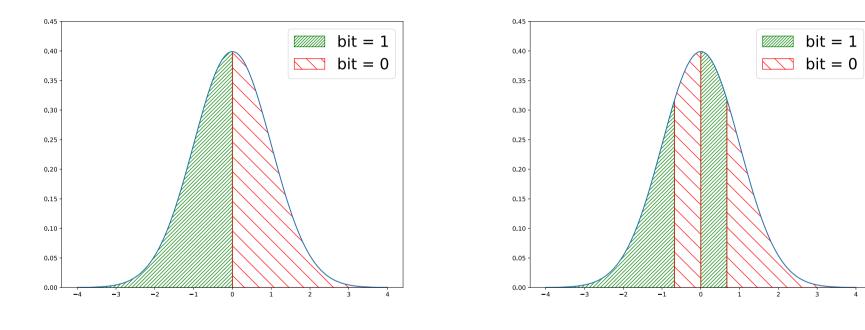
The Loop PUF

The Loop PUF Configurable Ring Oscillator


• Measure frequency/delay induced by challenge C

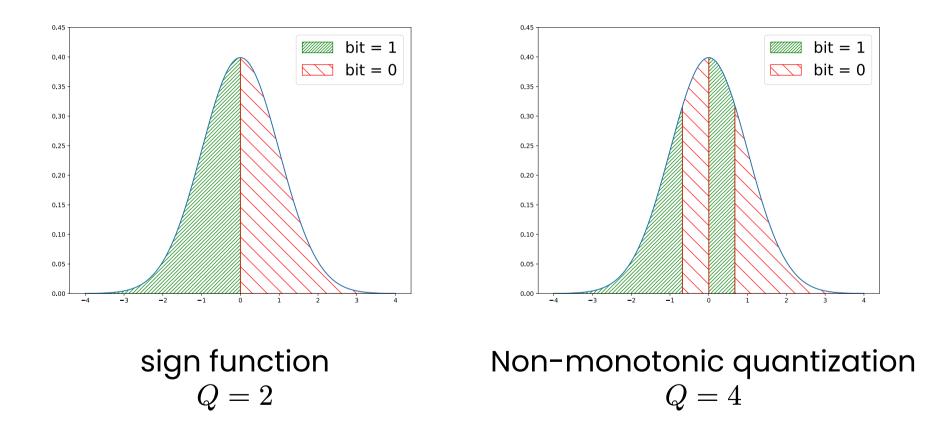
Neelam Nasir et al.

obust and Reliable PUF Protocol Exploiting NMQ and the Neyman-Pearson Lemma



- C Challenge
- **Standard deviation of delay variances (fixed for each device)**
- δ_C Raw response (delay difference between C and \overline{C})
- σ Standard deviation of measurement noise
- σ Standard devia $\hat{\delta}_C$ Noisy response
- *b* Quantization function

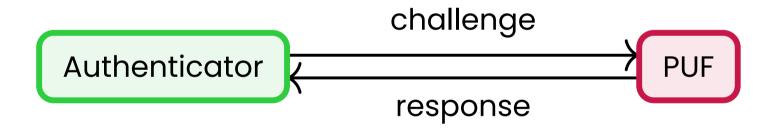
The Loop PUF **Quantization**



sign function

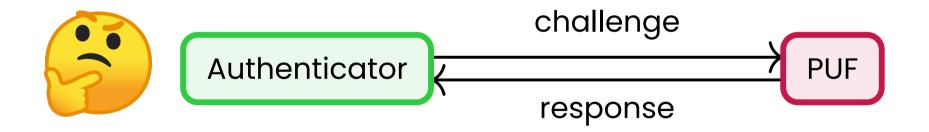
Non-monotonic quantization

The Loop PUF **Quantization**

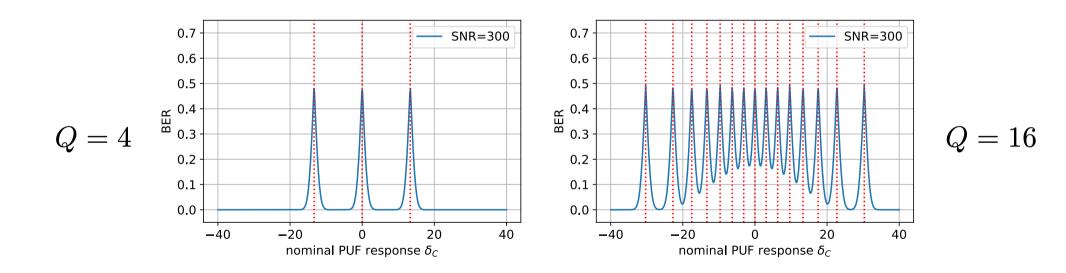


Reliability Evaluation

Bit-error Rate

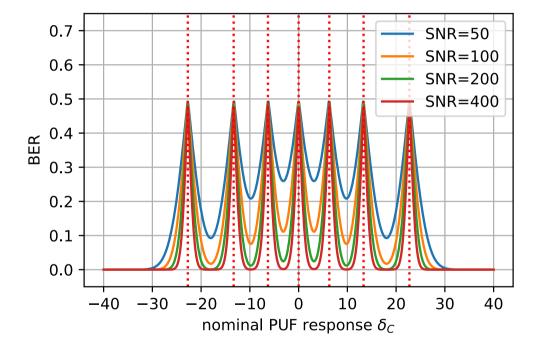

- The PUF's raw response $\hat{\delta}_C$ is **noisy**
- The same challenge might give differents reponses
- **Bit error rate** (BER):
 - Probability that the response differs from the nominal response

Bit-error Rate


- The PUF's raw response $\hat{\delta}_C$ is **noisy**
- The same challenge might give differents reponses
- **Bit error rate** (BER):
 - Probability that the response differs from the nominal response

Reliability Analysis of NMQ

- Raw response close to threshold \implies high BER
- Higher $Q \Longrightarrow$ more thresholds \Longrightarrow higher BER



Nominal PUF response vs BER

Reliability Analysis of NMQ

• Higher **noise** level \Rightarrow **higher BER**

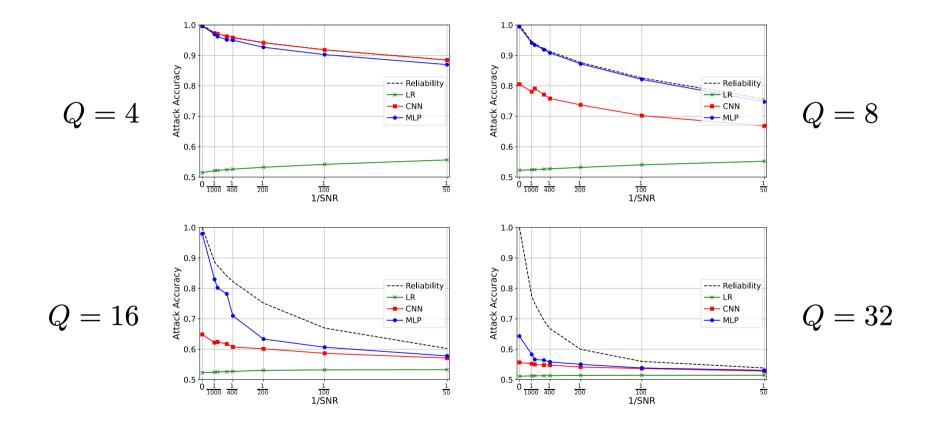
Nominal PUF response vs BER for Q = 8

Security Evaluation

Modeling Attacks

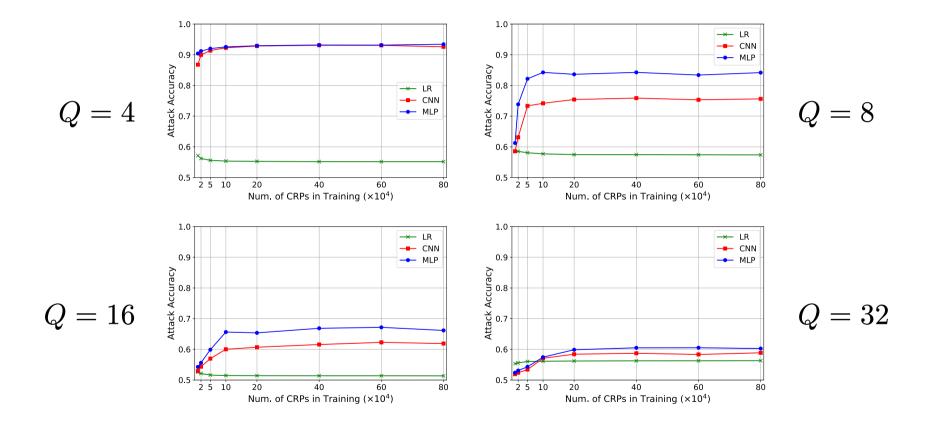
TELECOM Paris

- Try to impersonate a PUF
- Learning from intercepted challenge-response pairs
- Construction of a model
- Different learning strategies
 - Logistic regression
 - Deep learning


Attack Strategy

- Attack on Loop-PUF with NMQ
 - $Q \in \{4, 8, 16, 32\}$
- Simulated PUF with different noise levels
 - SNR $\in \{50, 100, ..., 1000, \infty\}$
- Real-world FPGA implementation
- Machine learning
 - 1. Logistic Regression (LR)
 - 2. Convolutional Neural Network (CNN)
 - 3. Multi-layer Perceptron (MLP)

Attack Results (Simulated)


Noise level vs attack accuracy

Neelam Nasir et al.

Robust and Reliable PUF Protocol Exploiting NMQ and the Neyman-Pearson Lemma

Attack Results (FPGA)

Number of training CRPs vs attack accuracy

Neelam Nasir et al.

Robust and Reliable PUF Protocol Exploiting NMQ and the Neyman-Pearson Lemma

Security Evaluation

- Logistic Regression defeated by NMQ
- Low quantization levels ($Q \in \{4, 8\}$) attackable using CNN and MLP
- Higher quantization levels ($Q \in \{16, 32\}$) are reasonably secure
- Noise makes attacks more difficult

However:

The quantization levels needed for good resistance against ML attacks lead to very poor reliability \odot

How to achieve both high reliability and good security?

Novel Protocol

- Need for more challenges
 - How many?

- Need for more challenges
 - How many?

Can we use reliability information?

- Need for more challenges
 - How many?

Can we use reliability information?

- Only send challenges with high reliability
 - This gives away too much information for an attacker!

- Need for more challenges
 - How many?

Can we use reliability information?

- Only send challenges with high reliability
 - This gives away too much information for an attacker!

Using reliability to weight responses

Novel Protocol

Taking Reliability into Account

TELECOM Paris

Hypotheses:

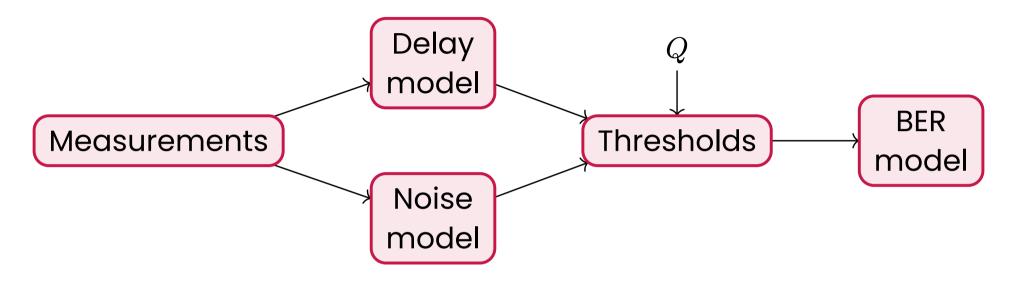
- H_0 : The device is **legitimate**.
- H_1 : The device is an **adversary**.

Hypotheses:

- H_0 : The device is **legitimate**.
- H_1 : The device is an **adversary**.

For response R to n challenges C_i with observed error $e_i \in \{0, 1\}$:

$$\alpha = \frac{L(R|H_0)}{L(R|H_1)} = \frac{\prod_{i=0}^{n} \text{BER}(C_i)^{e_i} (1 - \text{BER}(C_i))^{1-e_i}}{\left(\frac{1}{2}\right)^n}$$

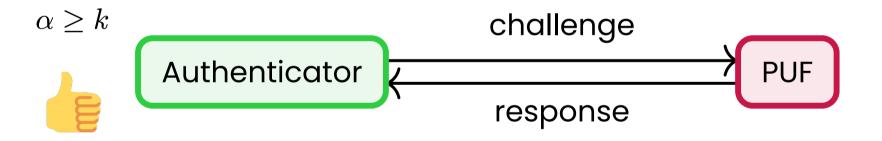

is the **likelihood ratio** of the response coming from a legitimate device versus a random adversary.

Novel Protocol

Protocol

Protocol Enrollment Phase

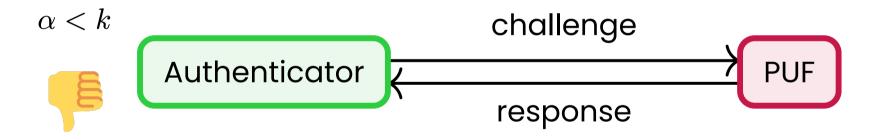
Reliability model:


- Measure raw delays for chosen (Hadamard) challenges
- Construct delay and noise models
- Derive thresholds
- Store reliability model on server-side

Protocol **Authentication**

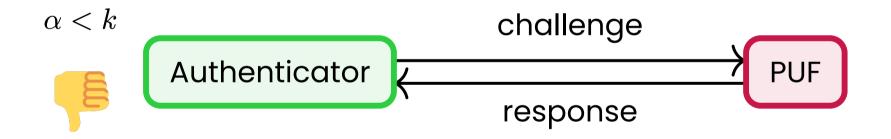
27 / 35

- Server sends *n* challenges
- PUF replies with reponse R
- Server computes α
- Server accepts authentication if α is above chosen threshold k



Protocol **Authentication**

27 / 35


- Server sends *n* challenges
- PUF replies with reponse R
- Server computes α
- Server accepts authentication if α is above chosen threshold k

Protocol **Authentication**

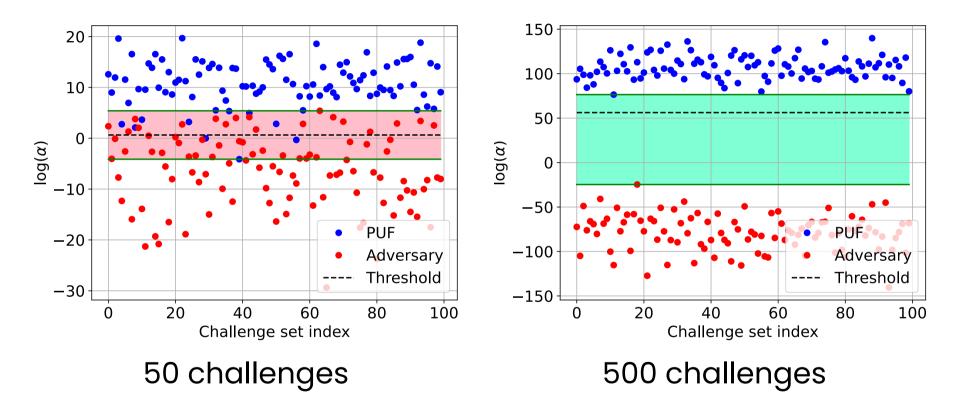
- Server sends *n* challenges
- PUF replies with reponse R
- Server computes α
- Server accepts authentication if α is above chosen threshold k

How to choose threshold $k? \implies$ experiments

Evaluation

Setup and Experiments

- Loop-PUF design
 - Delay chain with 64 elements
 - 16 bit counter values
 - FPGA implementation on Basys-3 (Xilinx Artix-7 28nm)
- Experiments
 - Authentication threshold
 - False authentication probability


Authentication Threshold

- Extract reliability model from PUF (enrollment)
- Sample responses for sets of random challenges
- Evaluate α for different set sizes

Authentication Threshold

Safety windows for Q = 16

False Authentication Probability

- Authentic device vs random adversary
- Varying number of challenges
 - ▶ $N \in \{50, ..., 500\}$
- Varying quantization level
 - $Q \in \{4, 8, 16, 32\}$
- Setting authentication threshold on the safe side
 - Probability of rejecting genuine device ≈ 0
- Tested on 16 different FPGA devices

False Authentication Probability

n	Q = 4	Q = 8	Q = 16	Q = 32
50	0.008 - 0.055	0.052 - 0.119	0.115 - 0.268	0.220 - 0.361
100	0.000 - 0.011	0.006 - 0.035	0.046 - 0.140	0.159 - 0.315
150	$3.605 imes 10^{-5} - 0.001$	0.002 - 0.012	0.016 - 0.104	0.073 - 0.255
200	$1.345\times 10^{-6} - 3.134\times 10^{-4}$	0.001 - 0.004	0.010 - 0.068	0.050 - 0.211
250	$1.220\times 10^{-5} - 2.509\times 10^{-4}$	$2.527 \times 10^{-4} - 0.002$	0.006 - 0.044	0.034 - 0.168
300	$1.090\times 10^{-9} - 2.285\times 10^{-7}$	$1.006 \times 10^{-5} - 0.001$	0.002 - 0.034	0.036 - 0.134
350	$2.125\times 10^{-10} - 2.484\times 10^{-7}$	$1.250\times 10^{-5} - 1.291\times 10^{-4}$	0.001 - 0.029	0.024 - 0.129
400	$1.221\times 10^{-6} - 1.781\times 10^{-5}$	$3.727 \times 10^{-6} - 8.169 \times 10^{-4}$	0.001 - 0.015	0.005 - 0.105
450	$1.607 \times 10^{-9} - 3.337 \times 10^{-7}$	$1.478\times 10^{-6} - 1.986\times 10^{-4}$	$2.252 \times 10^{-4} - 0.007$	0.006 - 0.079
500	$1.004 \times 10^{-10} - 1.195 \times 10^{-7}$	$4.542\times 10^{-6} - 8.002\times 10^{-6}$	$2.105 \times 10^{-4} - 0.004$	0.004 - 0.076
550	$1.021\times 10^{-13} - 4.862\times 10^{-10}$	$1.579 \times 10^{-8} - 2.908 \times 10^{-7}$	$1.812 \times 10^{-5} - 0.001$	0.004 - 0.065
600	$0.0-1.519\times 10^{-12}$	$1.014\times 10^{-8} - 1.576\times 10^{-5}$	$2.435 \times 10^{-5} - 0.001$	0.004 - 0.052

Conclusion

Conclusion

- Study of the **Loop-PUF** as authentication anchor
- Looking for interesting security-reliability trade-offs
- Evaluation of resistance to machine learning attacks
- Non-monotonic quantization improves security
- Compensation for poor reliability at protocol level

