

Liberté Égalité Fraternité

On the success rate of simple side-channel attacks against masking with unlimited attack traces

Aymeric Hiltenbrand, Julien Eynard, Romain Poussier

Hotline

1. Context

What Why How

2. Perfect profiling

Hamming weight leakage Linear leakage

3. Imperfect profiling

Hamming weight leakage Linear leakage

4. Practical experiments

Experimental setup

5. Conclusion

(nría_ 2

DPA scenario

Targeted intermediate value depends on VARYING variables eg: $Sbox[k \oplus m]...$

SPA scenario

Targeted intermediate value depends on FIXED variables eg: KeySchedule(K₀), Kyber's r...

How about masking ?

Context: Why is it interesting

DPA scenario

Targeted intermediate value depends on known and VARYING variables eg: $Sbox[k \oplus m]...$

SPA scenario

Targeted intermediate value depends on unknown or FIXED variables eg: $KeySchedule(K_0)$, Kyber's r...

Masking: unknown varying \implies SPA

Does the variability of masking change the behavior of SPA ?

Context: How do we study it: \textit{SR}_∞

Masking scheme

- ► Unmasked leakage: $L(V) = \varphi(V) + \mathcal{N}(0, \sigma_{noise}^2)$
- ► Boolean masking: $v = \bigoplus_{i=1}^{t} s_i$
- Arithmetic masking: $v = \sum_{i=1}^{t} s_i \mod n$

Leakage function φ

• Hamming weight leakage:
$$\varphi(x) = \sum_{n=1}^{n_{bits}} x_n$$

• Linear leakage: $\varphi(x) = \sum_{i=1}^{n_{bits}} a_i x_i$

Profiling

$$\blacktriangleright \mathcal{N}_p \to \infty$$

"Imperfect" profiling

Perfect profiling: Hamming weight leakage $\varphi(x) = \sum_{i=1}^{n_{bits}} x_i$

Unprotected

$$SR_{\infty}=rac{n_{bits}+1}{2^{n_{bits}}}$$

Boolean masking

Same \textit{SR}_{∞} as unprotected, for any number of shares (Proved)

Arithmetic masking

- More complex case because of carry propagation
- ► Seems to converge to 0.5
- \blacktriangleright With 3 shares, $SR_{\infty} = 1$ up to 12 bits

F Hamming weight leakage: Boolean vs arithmetic masking

V	sharing 1	sharing 2	sharing 3	sharing 4
(00): HW=0	(00,00): HW=(0,0)	(01,01): HW=(1,1)	(10,10): HW=(1,1)	(11,11): HW=(2,2)
(01): HW=1	(00,01): HW=(0,1)	(01,00): HW=(1,0)	(10,11): HW=(1,2)	(11,10): HW=(2,1)
(10): HW=1	(00,10): HW=(0,1)	(01,11): HW=(1,2)	(10,00): HW=(1,0)	(11,01): HW=(2,1)
(11): HW=2	(00,11): HW=(0,2)	(01,10): HW=(1,1)	(10,01): HW=(1,1)	(11,00): HW=(2,0)

Table: Boolean sharings of a 2-bit value v, with their Hamming weight leakages. The first column corresponds to v, and the others show the possible sharings.

v	sharing 1	sharing 2	sharing 3	sharing 4
(00): HW=0	(00,00): HW=(0,0)	(01,11): HW=(1,2)	(10,10): HW=(1,1)	(11,01): HW=(2,1)
(01): HW=1	(00,01): HW=(0,1)	(01,00): HW=(1,0)	(10,11): HW=(1,2)	(11,10): HW=(2,1)
(10): HW=1	(00,10): HW=(0,1)	(01,01): HW=(1,1)	(10,00): HW=(1,0)	(11,11): HW=(2,2)
(11): HW=2	(00,11): HW=(0,2)	(01,10): HW=(1,1)	(10,01): HW=(1,1)	(11,00): HW=(2,0)

Table: Arithmetic sharings of a 2-bit value v, with their Hamming weight leakages. The first column corresponds to v, and the others show the possible sharings.

Ínsia-

Perfect profiling: simulations for Hamming weight leakages

- ► SR_∞ is higher for arithmetic masking than for boolean an unmasked
- MI higher for boolean masking than for arithmetic masking

8

Perfect profiling: linear leakage function: $\varphi(x) = \sum_{i=1}^{n_{bits}} a_i x_i$

Theoretically, for all: $SR_{\infty} = 1$

Choice for the
$$a_i$$
's:
 $a_i \stackrel{\$}{\leftarrow} \mathcal{N}(1, \sigma_{leakage}^2)$ with $\sigma_{leakage}^2 = 10^{-4}$

Simulation:

- Two convergence regimes identified
- ▶ Bend at SR_{∞} for Hamming Weight

Linear leakage function: Two convergence regimes

Conditional PDFs (grey) and PDF mixture (black, dashed) for linear leakage in high noise (left) and low noise (right).

► Small number of traces (left): Distinction between values of different HW

► Large number of traces (right): Distinction between same HW values.

Linear leakage function: Limitations of the SNR

Expression of the SNR

$$SNR = rac{n_{bits}(rac{1}{2} + \sigma_{leakage}^2)}{2 \cdot \sigma_{noise}^2}$$

$$ightarrow \sigma_{leakage}^2$$
 really has an impact on the SPA convergence, but has almost none on the SNR value.

Imperfect profiling: Hamming weight leakage

▶ Boolean masking impacted the same by imperfect profiling as unprotected

Arithmetic masking is the most impacted

Imperfect profiling: Linear leakage

- ► SR_∞ can be higher for arithmetic masked implementation than for unmasked
- In the second regime, Boolean masking has higher than unprotected (yet unexplained)

Practical experiments: setup

- ► Target: STM32F415 32-bits ARM cortex M4 microcontroller @7.3MHz
- Acquisition: CHIPWHISPERER CW1200 with CW308 UFO BOARD @29.7MSa/s
- \blacktriangleright SNR \approx 6

$$\blacktriangleright \sigma_{leakage}^2 pprox 3 \cdot 10^{-4}$$

source: rtfm.newae.com

Practical experiments: results

- The arithmetic masking helps the attacker in a imperfect profiling scenario
- The boolean masking can make the attack more successful

Conclusion, discussion

✓ Verified in real-world application

Masking scheme

Impacts the SR $_\infty$ value in the case of a HW leakage (Arithmetic has higher SR $_\infty$)

Leakage function

Impacts the SR_{∞} value and SR convergence rate (depends on $\sigma_{leakage}^2$).

Number of profiling traces

Masked implementations can have a higher SR_∞ than unmasked ones.

Even though masking can make an attack reaching a higher SR_{∞} , masking should still be used !

Thank You.