
A Hardware Design Methodology to
Prevent Microarchitectural Transition

Leakages
April 3rd 2025

Mathieu Escouteloup1, Vincent Migliore2

1. Bordeaux University, IMS Lab, France 2. Toulouse University, LAAS-CNRS, France



Context
Overview

Cyberphysical and connected objets have been widely
adopted to address some important societal challenges.
They are the subject of two trends:

1 Increasing complexity: typically following System
On Chip (SoC) architectures.

2 Increasing attack surface: with hardware-oriented
attacks.

2 / 22
▲



Side-Channel Attacks
Overview

• Side-channel attacks (SCA) are gaining momentum
since they are an effective way to break cryptography
(along with fault injection).

• This presentation focus on power-based side-channel
attacks, i.e. extracting secrets from energy
consumption or electromagnetic field.

3 / 22
▲



Side-Channel Leakage Sources
Overview

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Target Dependent

Transition Leakage

Register rewriting

Memory read/write

Pipeline buffer rewriting

Glitches
Unbalanced propagation

delays in combinatorial logic

Coupling
Neighbor wires interaction

4 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

Several methods and tools have been proposed to verify security and
harden software or hardware against SCA, with possible interactions, to
increase the security level of a cryptographic implementation.

5 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

Masking: Method to allow side-channel observation without leaking se-
cret, based on a formal model of the attacker (t-probing for instance).
Challenge: Implement masking with minimal security loss.

at
ta

ck
er

m
od

el

at
ta

ck
er

m
od

el
at

ta
ck

er
m

od
el

5 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

FENL:
1 ISA modification to add fencing instructions to overwrite hardware

registers and prevent transitions between the previous/next
instructions.
Limitation: Recompilation required and security assessment on
simulated or real hardware required.

required

cleaning
instructions

µarchitecture
control

5 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

PARAM:
1 Direct data value manipulation obfuscation.
2 Can also increase masking order transparently.

Limitation: Transition leakage not addressed.

required

value
leakage
removal

5 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

COCO:
1 Hardening process split between hardware and software.
2 Deeply hidden transitions in hardware only.

Limitation: Important part is still delegated to the software:
successive instructions or architectural overwritting. Usefull for simple
processors without pipeline.

required

(only) deep
transition
leakage
removal

5 / 22
▲



Side-Channel Analysis and Mitigation
State Of The Art

Algorithm

Architecture (ISA)

Microarchitecture

Circuit

Masking technique

Security Assessment

Hardening

Formal verification

Leakage simulation

Software

Hardware

This Work:
1 Methodology to address transition leakage when designing processors

with large pipelines.
2 Configurable balance between software and hardware hardening.
3 Microbenchmarks to assess transition leakage security (in RTL

simulation or real target).

depends
on the

configuration

configurable
transition
leakage
removal

5 / 22
▲



Datapath Description and Hardening Strategy

1 Microarchitectural Hardening (mutually exclusive)
S1 Complete Stage Overwriting

Delayed Data Multiplexing
S2 Microarchitecture Register Duplication

2 Architectural Hardening
S3 Architectural Register Pre-Writing

Decoupled Memory Operations

6 / 22
▲



Strategy S1: Complete Stage Overwriting
Overview

Objective
Full pipeline cleaning (including combinatorial logic):
Before: S0 → S1 → S2

After: S0 → 0x0 → S1 → 0x0 → S2

Remark: Only 1 buffer is represented, but all data dependent
buffers in a stage are patched with 0x0 insertion synchronized.

7 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle
Register’s value

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1
Register’s value S0

Propagation of S0 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2
Register’s value S0 0x0

Stage buffers and all combinatorial logic cleaning (i.e. set
to 0).

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2 3
Register’s value S0 0x0 S1

Propagation of S1 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2 3 4
Register’s value S0 0x0 S1 0x0

Stage buffers and all combinatorial logic cleaning (i.e. set
to 0).

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5
Register’s value S0 0x0 S1 0x0 S2

Propagation of S2 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5 6
Register’s value S0 0x0 S1 0x0 S2 0x0

Stage buffers and all combinatorial logic cleaning (i.e. set
to 0).

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5 6 7
Register’s value S0 0x0 S1 0x0 S2 0x0 S3

Propagation of S3 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

8 / 22
▲



Strategy S1: Complete Stage Overwriting
Security exposed to ISA

Security Property
For a given pipeline stage and all possible instruction’s
sequence manipulating data stored in the Register File,
no transition leakage can occur in the stage (buffer +
logic behind) by design.

Remark: Since ID/EX buffer must be patched, there is no
reason to change strategy for following stages because the
2 cycles penalty will be propagated to the other stages.

9 / 22
▲



Strategy S1: Delayed Data Multiplexing
Standard Pipeline Issue

Data can come from different sources
→ need multiplexing with 0x0 insertion guarantees.

Targeted mechanisms: register forwarding, load resize
buffer, skid buffer (memory controller).

10 / 22
▲



Strategy S1: Delayed Data Multiplexing
Standard Pipeline Issue

• Definition of a Slot Finite State Machine to alternate
between inputs.

• Ready not displayed but required to delay inputs.

Hardware implementation: input selection using a slct
log2(Ninputs)-bit register, force zero using a zero 1-bit
register after each processed operation.

11 / 22
▲



Strategy S2: µarch. Register Duplication
Overview

Objective
Stage buffer cleaning:
Before: S0 → S1 → S2 → S3

After: Rabove S0 → 0x0 → S2 → 0x0
Rbelow 0x0 → S1 → 0x0 → S3

output S0 → S1 → S2 → S3

12 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle
Rabove’s value
Rbelow ’s value

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1
Rabove’s value S0

Rbelow ’s value 0x0

Propagation of S0 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2
Rabove’s value S0 0x0
Rbelow ’s value 0x0 S1

Propagation of S1 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2 3
Rabove’s value S0 0x0 S2

Rbelow ’s value 0x0 S1 0x0

Propagation of S2 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2 3 4
Rabove’s value S0 0x0 S2 0x0
Rbelow ’s value 0x0 S1 0x0 S3

Propagation of S3 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5
Rabove’s value S0 0x0 S2 0x0 S4

Rbelow ’s value 0x0 S1 0x0 S3 0x0

Propagation of S4 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5 6
Rabove’s value S0 0x0 S2 0x0 S4 0x0
Rbelow ’s value 0x0 S1 0x0 S3 0x0 S5

Propagation of S5 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Stage Evolution Cycle By Cycle

cycle 1 2 3 4 5 6 7
Rabove’s value S0 0x0 S2 0x0 S4 0x0 S6

Rbelow ’s value 0x0 S1 0x0 S3 0x0 S5 0x0

Propagation of S6 bits (+ all outputs from other stage
buffers) through the combinatorial logic.

13 / 22
▲



Strategy S2: µarch. Register Duplication
Security exposed to ISA

Security Property
For a given pipeline stage and all possible instruction’s
sequence manipulating data stored in the Register File,
no transition leakage can occur in the buffer by design.

14 / 22
▲



Strategy S3.a: Arch. Register Pre-Writing
General Purpose Register File Hardening

Cycle N Cycle N + 1

Same strategy than S1 Complete Stage Overwriting,
but the Write Back allow anticipate which register
must be cleaned.

15 / 22
▲



Strategy S3.b: Decoupled Memory Operations
Memory Controller Hardening

Trash: a reserved memory location to perform
hardware hardening operations.
Read: after each valid read, a second read is
performed from the trash to clean the rdata signal.
Write: before each write, a previous operation
overwrite wdata and the memory value / after, a write
is performed to the trash to clean the wdata signal.

16 / 22
▲



Implementation Results
Configurations Evaluated

1 Target Architecture: RISCV32IM_Zicsr
2 Specifications in CHISEL
3 Validation with microbenchmarks:

• In simulation with Verilator
• In real target with chipwhisperer

Conf. Stages S1.a S1.b S2 S3.a S3.b
C5U 5
C5S1 5
C5S2 5 ⋆

C7U 7
C7S1 7
C7S2 7 ⋆

⋆ : Partial support, trash operations not needed to clean
signals.

17 / 22
▲



Implementation Results
Security with Correlation Power Analysis

C5U C5S1 C5S2

Above Arithmetical and logical operations sequence.
Below Store operations sequence.

Configuration: 50,000 traces
18 / 22

▲



Implementation Results
Performance

Conf. Embench LUT FF
C5U 1 1 1
C5S1 1.8635 1.0533 1.0088
C5S2 1.0266 1.3746 1.2418
C7U 1 1 1
C7S1 1.4821 1.1116 1.0215
C7S2 1.0002 1.2751 1.3343

Ratio with unprotected cores (CU5 and CU7).

19 / 22
▲



Conclusion

1 Addressing transition leakage from its root cause is
possible (and implementable).

2 Design choices between security, area and cycles
overhead are required (with possible software
countermeasures).

3 Glitches may still occur here since it’s not a
µarchitectural issue (circuit layer), and are not clearly
identified after removing other leakage.

20 / 22
▲



Future Work

Other layers consideration:

Application Impact of the different hardware strate-
gies?

ISA Possibility to enable/disable a strategy
only when needed

Physical Impact of synthesis / place-and-route
steps?

21 / 22
▲



Thanks for your attention. Don’t hesitate to ask your
questions.

22 / 22
▲


