CASCADE Conference 03/04/2025

Improving Leakage Exploitability in Horizontal Side Channel Attacks through Anomaly Mitigation with Unsupervised Neural Networks

Gauthier Cler, Sébastien Ordas, Philippe Maurine

SECURE YOUR FUTURE

1 Horizontal Attacks

2 Impact of anomalies on Pol selection

3 Anomalies mitigation

4 Results

5 Conclusion

ς

Horizontal Attacks

・ロト・日本・モト・モー シックへ

Horizontal Attacks

- ► Single trace attack
- ▶ No profiling on open device possible, no leakage assessment.
- ► Usually on asymmetric implementations (RSA, ECC).
- ► Clustering approach:
 - Divide trace into patterns
 - 2 Points of Interest (PoI) selection with univariate clustering
 - 3 Multidimensional clustering

Attack success highly relies on the quality of the trace.

Impact of anomalies on Pol selection

・ロト・日本・モト・モー シックへ

Anomalies in data

Outliers (interquantile range)

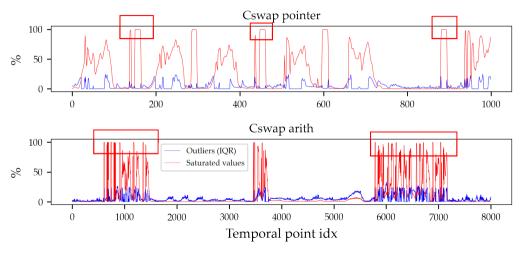
Distribution tails

$$x \notin [Q_1 - 1.5 imes IQR, Q_3 + 1.5 imes IQR]$$

Anomalies in data

Outliers (interquantile range)

Distribution tails

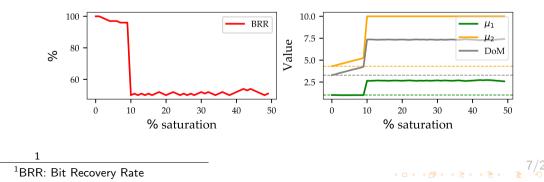

$$x \notin [Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$$

Saturated values

min/max values of digital sampling, for 8bit:

$$x = -128 \lor x = 127$$

Anomalies in data



/21

S

Impact of anomalies on Pol selection

- Clustering is not robust to anomalies in data
- ► Can cause centroids shift, singularities,...

Anomalies mitigation

Limits of simple mitigation

Mitigation by ablation

- Remove time points based on anomalies threshold
- Possibly loosing information about the leakage

Limits of simple mitigation

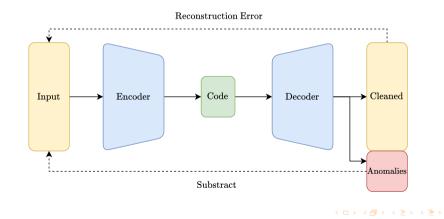
Mitigation by ablation

- Remove time points based on anomalies threshold
- Possibly loosing information about the leakage

Mitigation by replacement

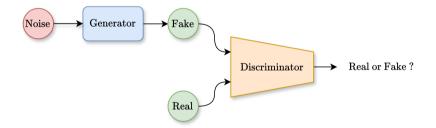
- Replace anomalies points with mean/median of non anomalies for each time point
- Decrease separability of mixture components

Contribution - Mitigation with neural networks

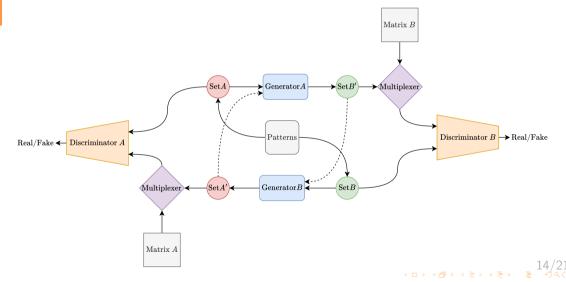

Consider alternative methods

- ► Able to be trained in an unsupervised manner
- ► Leakage/information conservation
- ► Two approaches:
 - : Robust auto-encoder
 - : CycleGAN

Robust auto-encoder unsupervised mitigation

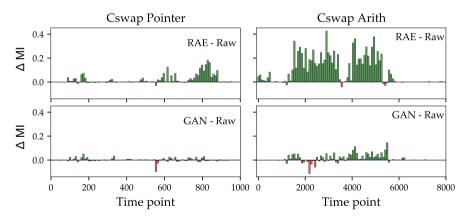

Decomposition of input data to **cleaned** and **anomalies** matrices. Prior on the anomalies amount.

- ► RAE Generate new synthetic patterns
 - \rightarrow Can cause side effects on non anomalies points.


- ► RAE does not exploit the anomalies model.
 - \rightarrow Fully unsupervised

Generative Adversarial Networks

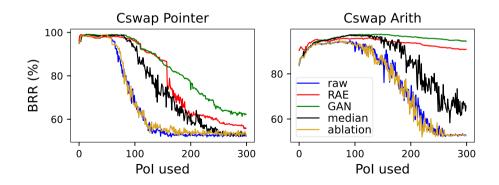
S


Multiplexer CycleGAN self-supervised mitigation

Results

Information conservation

No change in the global MI.¹

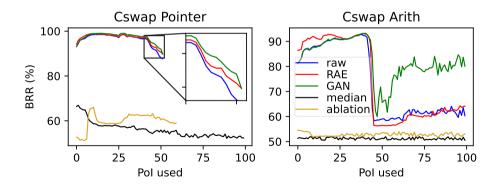


¹Estimated with MINE.

A D F A B F A B F A B F B

Supervised selection - upper bound

Select k Pol with highest t-values and apply multidimensional clustering.



(日) (四) (三) (三) (三)

S

Unsupervised selection

Multidimensional clustering on the best k Pol from Cler *et al.* 2023 unsupervised selection.

(日) (四) (三) (三)

S

・ロト・日本・モト・モー シックへ

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Limitations

▶ Architecture choice and parameters tuning can be hard in practice

(日) (四) (日) (日)

▶ Attack success still depends on the exploitation method

Benefits

- ► Anomalies mitigation improves leakage exploitability
- ▶ Methods are applicable in a completely unsupervised context

Limitations

- ▶ Architecture choice and parameters tuning can be hard in practice
- ▶ Attack success still depends on the exploitation method

Future work

- Consider additional anomalies models
- ► Generalize on other targets/algorithms

Thank you for your attention.

Do you have any question?

S

SAFETY & SECURITY

14, rue Galilée 33600 PESSAC 05 57 26 08 88 contact-s3@serma.com

Bonus

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶