

03/04/2025

TAKING AI-BASED SIDE-CHANNEL ATTACKS TO A NEW DIMENSION

:: CSeM

HOW TO RUN SIDE-CHANNEL ATTACKS

- Attack AES256 key byte-per-byte
 - Specific intermediate value
- [Opt.] Apply a labelling function on top
 - Hamming Weight (HW)
 - Hamming Distance

 \rightarrow HW can be more correlated to the actual power leakage, but is also less informative:

Algorithm 1 AES Encryption 1: function AESENCRYPTION(ptx, K) $K_0, K_1, \ldots, K_{N_r} = \text{KeyExpansion}(K, N_r)$ 2: AddRoundKey (ptx, K_0) 3: for $r = 1, 2, 3, \ldots, N_r - 1$ do 4: SubBytes(ptx)υ. ShiftRows(ptx)6: MixColumns(ptx)7: AddRoundKey (ptx, K_r) 8: SubBytes(ptx)9: ShiftRows(ptx)10:AddRoundKey (ptx, K_{N_r}) 11:

HW value 3 50 26 8 4 75628705628Occurrences 8 8

SIDE CHANNEL ATTACKS (SCA) & AI

- A lot of publications in the past 15 years
- Improvements are mainly about:
 - Re-using generic AI techniques and applying them to SCA
 - Optimizers [1]
 - Vizualisation (in unprofiled attacks) [2]
 - Learning Rates [3, 4]
 - Model selection and fine-tuning [5, 6, 7, 8]
 - Pre-processing operations ("Make Some Noise", "Auto-encoders", "Mean", ...) [9, 10]
- All use the same batch of public datasets to compare against each other:
 - ASCAD variants, AES_HD, AES_RD, DPAContestV4, CHES CTF 2023 (SMAesH), ...

" CSen

^[1] Perin, G., Picek, S.: On the Influence of Optimizers in Deep Learning-based Side-channel Analysis. In: Cryptology ePrint Archive, Paper 2020/977 (2020)

^[2] Timon, B.: Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(2), 107–131 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.107-131, https://tches.iacr.org/index.php/TCHES/article/view/7387

^[3] Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV). pp. 464–472. IEEE (2017)

^[4] Masure, L., Dumas, C., Prouff, E.: Gradient Visualization for General Characterization in Profiling Attacks. In: Constructive Side-Channel Analysis and Secure Design, pp. 145–167. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-16350-19, <u>https://doi.org/10.1007/978-</u>3-030-16350-1_9

^[5] Wu, L., Perin, G., Picek, S.: I Choose You: Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis. Cryptology ePrint Archive, Report 2020/1293 (2020), https://ia.cr/2020/1293

^[6] Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 677–707 (2021)

^[7] Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for efficient CNN architectures in profiling attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 147–168 (2020)

^[8] Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for Efficient CNN Architectures in Profiling Attacks (Nov 2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.php/TCHES/article/view/8391

^[9] Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measurements with autoencoders. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 389–415 (2020)

^[10] Wu, L., & Picek, S. (2020). Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders. IACR Cryptol. ePrint Arch., 2019, 1474.

SIDE-CHANNEL ATTACKS (SCA) & CLASS IMBALANCE

- Picek, S. et al. [1] proposed
 - SMOTE as a best-working solution to combat imbalanced datasets in the SCA context
 - SMOTE generates artificial samples (over-sampling) of rare classes in the profiling set to even-out all classes
 - Not to use labelling (i.e. Identity labelling) for best attack performance
- Since then, only *few* papers proposed a comparison using HW

• What if... there was more to HW?

[1] Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1), 1–29 (Aug 2019). https://doi.org/10.13154/tches.v2019.i1.209-237, https://hal.inria.fr/hal-01935318

TAKING AI-BASED SIDE-CHANNEL ATTACK TO A NEW DIMENSION

DEEP LEARNING BASICS

• A Multi-Layer Perceptron

 $\theta_i^{(j)}$: i-th parameter of layer j

DEEP LEARNING BASICS

• A Multi-Layer Perceptron

 $\theta_i^{(j)}$: i-th parameter of layer j

SOFTMAX FUNCTIONS

- The **softmax** function normalizes the logits, each prediction will sum to 1
- Softmax(L, t, c) = $\frac{e^{L_{t,c}}}{\sum_{j=0}^{n} e^{L_{t,j}}}$
- Each power trace is mapped to a probability density function over the different classes
- In the implementation, the softmax function is called once over a 2D matrix of logits L of size (Batch-size / # output-classes)

SOFTMAX FUNCTIONS

- The **softmax** function normalizes the logits, each prediction will sum to 1
- Softmax(L, t, c) = $\frac{e^{L_{t,c}}}{\sum_{j=0}^{n} e^{L_{t,j}}}$
- Each power trace is mapped to a probability density function over the different classes
- In the implementation, the softmax function is called once over a 2D matrix of logits L of size (Batch-size / # output-classes)
- Our work shows that transposing this input matrix confers promising properties for a SCA
 - We dubbed this variant "Dimension 0"

iginal	C 0	C1	C2	DIM = 0	C 0	C1	C 2	DIM = 1	C 0	C1	
)	3	47	10	to				to	0 0%	44 100%	
t1	4	40	6	t ₁				t ₁	0 0%	36 100%	
t ₂	1	60	2	t ₂				t ₂	0 0%	59 100%	
t ₃	10	60	5	t ₃				t ₃	5 0%	55 100%	

Original	C 0	C1	C2	DIM = 0	C 0	C1	C2	DIM = 1	C 0	C1	C 2
to	3	47	10	to				to	0 0%	<mark>44</mark> 100%	7 0
t1	4	40	6	t ₁				t ₁	0 0%	<mark>36</mark> 100%	2 0
t ₂	1	60	2	t ₂				t ₂	0 0%	<mark>59</mark> 100%	1 09
t ₃	10	60	5	t ₃				t ₃	5 0%	<mark>55</mark> 100%	0 09

Original	C 0	C1	C2	DIM = 0	C 0	C1	C2	DIM = 1	C 0	C1	C2
to	3	47	10	to	2 0%			to	0 0%	<mark>44</mark> 100%	7 0%
t1	4	40	6	t1	3 0%			t ₁	0 0%	<mark>36</mark> 100%	2 0%
t ₂	1	60	2	t ₂	0 0%			t ₂	0 0%	<mark>59</mark> 100%	1 0%
t ₃	10	60	5	t ₃	9 100%			t ₃	5 0%	<mark>55</mark> 100%	0 0%

Original	C 0	C1	C2	DIM = 0	C 0	C1	C 2	1	DIM = 1	C 0	C1	
t _o	3	47	10	to	2 0%	7 0%			to	0 0%	<mark>44</mark> 100%	
t1	4	40	6	t1	3 0%	0 0%			t ₁	0 0%	36 100%	
t ₂	1	60	2	t ₂	0 0%	20 50%			t ₂	0 0%	<mark>59</mark> 100%	
t ₃	10	60	5	t ₃	9 100%	20 50%			t ₃	5 0%	<mark>55</mark> 100%	

Original	C 0	C1	C2	DIM = 0	C 0	C1	C 2	DIM = 1	C 0	C1	C 2
to	3	47	10	to	2 0%	7 0%	8 97%	to	0 0%	<mark>44</mark> 100%	7 0%
t1	4	40	6	t1	3 0%	0 0%	4 2%	t1	0 0%	<mark>36</mark> 100%	2 0%
t ₂	1	60	2	t ₂	0 0%	20 50%	0 0 %	t ₂	0 0%	<mark>59</mark> 100%	1 0%
t ₃	10	60	5	t ₃	9 100%	20 50%	3 1 %	t ₃	5 0%	<mark>55</mark> 100%	0 0%

Original	C 0	C1	C2	DIM = 0	C 0	C 1	C 2		DIM = 1	C 0	C1	C2
to	3	47	10	to	2 0%	7 0%	<mark>8</mark> 97%	-	to	0 0%	<mark>44</mark> 100%	7 0%
t1	4	40	6	t1	3 0%	0 0%	<mark>4</mark> 2%	-	t ₁	0 0%	<mark>36</mark> 100%	2 0%
t ₂	1	60	2	t ₂	0 0%	<mark>20</mark> 50%	0 0%		t ₂	0 0%	<mark>59</mark> 100%	1 0%
t ₃	10	60	5	t ₃	<mark>9</mark> 100%	20 50%	3 1 %		t ₃	5 0%	<mark>55</mark> 100%	0 0%

Original	C 0	C 1	C2	DIM = 0	C 0	C1	C2	DIM = 1	C 0	C1	C2
to	3	47	10	to	2 0%	7 0%	<mark>8</mark> 97%	to	0 0%	<mark>44</mark> 100%	7 0%
t ₁	4	40	6	t ₁	3 0%	0 0%	<mark>4</mark> 2%	t ₁	0 0%	<mark>36</mark> 100%	2 0%
t ₂	1	60	2	t ₂	0 0%	<mark>20</mark> 50%	0 0 %	t ₂	0 0%	<mark>59</mark> 100%	1 0%
t3	10	60	5	t ₃	<mark>9</mark> 100%	20 50%	3 1 %	t ₃	5 0%	<mark>55</mark> 100%	0 0%

- Proposition 1
 - Per-class processing
 - Increase a class score (logit-value) for an input ←→ decreasing from another input

DIMENSION 0 - INSIGHTS

Corollary 1

1. Class score imbalance is not preserved

- 2. Elect best input representatives for every class
 - \rightarrow Usually, it's the opposite
- 3. Better consideration of rare classes

DIMENSION O'S INCREASED CONSIDERATION TO RARE CLASSES

- The sum of the class-scores for one input trace does not sum to 1 anymore
- However, the global key-ranking algorithm did not change
 - Consequence:

This trace accounts only for 2% on C2

This trace accounts for 100% on C0, 50% on C1 and 1% on C2

DIMENSION 0'S INCREASED CONSIDERATION TO RARE CLASSES

- The sum of the class-scores for one input trace does not sum to 1 anymore
- However, the global key-ranking algorithm did not change
 - Consequence:

→ Input traces with *easily classifiable classes* tend to have more weight

- We assess Dimension 0 performance with different optimizers
 - Adaptive optimizers have, for each batch, an adaptive learning rate for each parameter.

 Nesterov, Y.E.: A method of solving a convex programming problem with convergence rate o\bigl(k^2\bigr). In: Doklady Akademii Nauk. vol. 269, pp. 543–547. Russian Academy of Sciences (1983)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research 12(7) (2011)

[3] Zeiler, M.D.: Adadelta: An adaptive learning rate method (2012)[4] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014)

Mean logit value for each class of first batch at each epoch. Light green ←→ rare classes. Dark green ←→ common classes. Model: CNN exp. Dataset: AES nRF.

Mean logit value for each class of first batch at each epoch. Light green ←→ rare classes. Dark green ←→ common classes. Model: CNN exp. Dataset: AES nRF.

Mean logit value for each class of first batch at each epoch. Light green ←→ rare classes. Dark green ←→ common classes. Model: CNN exp. Dataset: AES nRF.

COMBINING BENEFITS

Train each class separately

Adaptive Optimizer

 Train each weight separately

- Rare classes are better off
- Traces with targeted labels have more weight in ranking

EXPERIMENTS

ASCAD: SIMPLE, FIXED KEY

Technique	Approx. number of traces	Comment
Dim 1 with ID	300	
Dim 1 with HW	∞	Not feasible
Dim 1 with HW + SMOTE	450	Noisy
Dim 0 with HW	200	100 may be enough

Attacking ASCAD_fixed with the MLP_best model and batch size 100

https://doi.org/10.1007/s13389-019-00220-8, https://doi.org/10.1007/s13389-019-00220-8

33

CSem

ASCAD – DESYNC LEVEL 50

Technique	Approx. number of traces	Comment
Dim 1 with ID	150	
Dim 1 with HW	N/A	
Dim 1 with HW + SMOTE	∞	Not feasible
Dim 0 with HW	<175	150 may be enough

Attacking ASCAD_desync50 with the CNN_zaid model and batch size 50

34

ASCAD – DESYNC LEVEL 100

Technique	Approx. number of traces	Comment
Dim 1 with ID	200	
Dim 1 with HW	N/A	
Dim 1 with HW + SMOTE	∞	Not feasible
Dim 0 with HW	200	

Attacking ASCAD_desync100 with the CNN_zaid model, batch size 50

(b) ASCAD_desync100, CNN_zaid on dim0 and dim1 with SMOTE, HW labelling

[1] Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for efficient CNN architectures in profiling attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 147–168 (2020)

labelling [1]

ASCAD – WITH VARYING KEYS DURING PROFILING

36

OTHER DATASETS – AES_HD & DPACONTEST

• Compares against own implementation of dimension 1 VS 0, not State-of-the-Art

Attacking various HW-labelled datasets 50 times, comparing dim0 and dim1

BONUS: UNPROFILED ATTACKS – AES_HD

Unprofiled performance of the CNNexp model on the AES_HD dataset using a HD labelling with 15 epochs and over 10 attacks for each dimension.

Attack Number	1	2	3	4	5	6	7	8	9	10
dim0 Key Rank	1	1	2	10	6	2	1	1	14	1
dim1 Key Rank	126	2	80	3	18	168	1	66	5	58

Technique	Key Rank 1 Success Rate	Key Rank 20 Success Rate
Dim 1 with HD	10%	50%
Dim 0 with HD	50%	100%

CONCLUSION – DIMENSION 0

- Straightforward implementation
- Not generalizable to other applications
- Separate class training
 - With an adaptive optimizer, and exponential decay
 - No Inter-class bias
- "Comparing" input traces with each other
- Varying global ranking trace-weights

THE MLSCALIB: A LIB FOR SCA & ML

INTRODUCING THE MLSCALIB

Usable via command line & as package

Implements dozens of ML publications for SCA

Detailed documentation

https://github.com/csem/MLSCAlib

MLSCALIB MODELS

- 30 PyTorch models
- 1 autoencoder

T Files				
않 main	•	+	٩	
Q Go to file			t	
- 🖿 Architectures				
🗋 _initpy				
🗋 autoencoders.py				
🗋 torch_models.py				
Attacks				
> 🖿 .ipynb_checkpoints				
Plots.ipynb				
🖺 _initpy				
🗋 attack.py				
🗋 blind_unprofiled.py				
🗋 profiled.py				
🗋 profiled_classic.py				
🗋 unprofiled.py				
Ciphers				
Data				
Scripts				
docs				

MLSCAlib / Attacks / attack.py

Code	Blame	1065 lines	(975	loc) · 51.6 KB	沿 Your organiza
68	class	Attack(ABC)	:		
184		return op	timize	er	
185	✓ de	f _get_mode	l(sel	f):	
186		"""Return:	s the	model correspond	ing to the init a
187		num_sample	es=se	lf.data_manager.g	et_ns()
188		<pre>if(self.me</pre>	odel_ı	<pre>name=="cnn_exp"):</pre>	
189		model	= CNI	<pre>Nexp(self.leakage</pre>	_model.get_classe
190		elif(self	.model	l_name=="cnn_best	"):
191		model	= CNI	Nbest (self.leaka g	e_model.get_class
192		elif(self	.model	l_name=="cnn_zaid	0"):
193		model	= CNI	N_zaid_desync0 (se	lf.leakage_model.
194		elif(self	.model	l_name=="cnn_zaid	50 "):
195		model	= CNI	N_zaid_desync50 (s	elf.leakage_model
196		<pre>elif(self</pre>	.model	l_name=="cnn_zaid	100"):
197		model	= CNI	N_zaid_desync100(<pre>self.leakage_mode</pre>
198		elif(self	.model	L_name=="no_conv0	"):
199		model	= No	Conv_desync0(self	.leakage_model.ge
200		elif(self	.model	l_name=="no_conv5	0"):
201		model	= No(Conv_desync50(sel	f.leakage_model.g
202		elif(self	.model	l_name=="no_conv1	00"):
203		model	= No(Conv_desync100(se	lf.leakage_model.
204		elif(self	.model	l_name in ["CNN_M	PP16","MPP","MPP1
205		model	= CNI	N_MPP16(self.leak	age_model.get_cla
206		elif(self	.model	l_name == "agnost	ic"):
207		model	= Agı	nosticModel <mark>(self</mark> .	<pre>leakage_model.get</pre>
208		<pre>elif(self</pre>	.model	l_name=="mlp"):	
209		model		MLP(self.leakage	_model.get_classe
210		<pre>elif(self</pre>	.model	l_name=="mlp_asca	d"):
211		model		<pre>MLP_ASCAD(self.1</pre>	eakage_model.get_
212		elif(self	.model	l_name=="mlp_aesr	d"):

MLSCALIB PLOTS

- Gradient Visualization
- Accuracies
- Confusion
- Fast Guessing Entropy

MLSCALIB PLOTS

- Unprofiled attacks, for each guess:
 - Gradient visualization
 - Accuracies
 - Fast Guessing Entropy

2 types of x-axis

Compares attacks

MLSCALIB BENCHMARKS

47 • Taking AI-Based Side-Channel Attacks to a New Dimension

CSem

FACING THE CHALLENGES OF OUR TIME