Area Efficient Polynomial Arithmetic Accelerator for Post-Quantum Digital Signatures and KEMs

Dina KAMEL, François-Xavier STANDAERT

Lattice-based Post-Quantum Crypto

- ► Lattice-based schemes defined over the ring $\mathcal{R}_q = \mathbb{Z}_q/(x^n + 1)$ rely on algebraic operations on high-order polynomials.
- ► High-order polynomial multiplication is very expensive.
 - $_{\circ}$ School-book multiplication complexity is $\mathcal{O}(n^2)$.
- Number Theoretic Transform (NTT) simplifies multiplication of polynomials.
 - NTT complexity is $O(n \log(n))$.
- ► To use NTT, schemes must comply with two conditions:
 - \circ *n* is a power of 2.
 - Support NTT-friendly primes $q \equiv 1 \mod 2n$ to achieve fully-splitting of the polynomial ring.

Supported Post Quantum Crypto schemes

	Purpose	Hardness	λ	n	q	$log_2(q)$
Dilithium	Digital signature	MLWE	2/3/5	256	8380417	24
Hawk	Digital signature	LIP	1 / 5	512 / 1024	2147473409, 2147389441	62 (31, 31)
Raccoon	Digital signature	MLWE	1/3/5	512	16515073, 33292289	49 (24, 25)
Kyber KEM		MLWE	1/3/5	256	3329	12
Polka	Encryption scheme	LWPR		1024	5939	16

If $n = 2^k$ and $q \equiv 1 \mod 2n$ then the primitive 2n -th root of unity ζ exists s.t $\zeta^{2n} \mod q = 1$

Number Theoretic Transform

If $n = 2^k$ and $q \equiv 1 \mod 2n$ then the primitive 2n -th root of unity ζ exists s.t $\zeta^{2n} \mod q = 1$

Source: NTT and its applications in lattice-based cryptosystems: A survey by ZHICHUANG Liang 2022

Polynomial Arithmetic Unit Architecture

Design decisions
 2 BFU in parallel

Polynomial Arithmetic Unit Architecture

- ► 2 BFU in parallel
- ► In-place NTT

Polynomial Arithmetic Unit Architecture

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access

Polynomial Arithmetic Unit Architecture

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access
- Storing a polynomial in 4 BRAMs

Polynomial Arithmetic Unit Architecture

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access
- Storing a polynomial in 4 BRAMs
- Storing the NTT twiddle factors (TF) in LUTs instead of BRAM

Polynomial Arithmetic Unit Architecture

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access
- Storing a polynomial in 4 BRAMs
- Storing the NTT twiddle factors (TF) in LUTs instead of BRAM
- Reusing the TFs during INTT

Polynomial Arithmetic Unit Architecture

Design decisions

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access
- Storing a polynomial in 4 BRAMs
- Storing the NTT twiddle factors (TF) in LUTs instead of BRAM
- Reusing the TFs during INTT

Genericity

Design-time generic architecture

Polynomial Arithmetic Unit Architecture

Design decisions

- ► 2 BFU in parallel
- ► In-place NTT
- Conflict-free memory access
- Storing a polynomial in 4 BRAMs
- Storing the NTT twiddle factors (TF) in LUTs instead of BRAM
- Reusing the TFs during INTT

Genericity

- Design-time generic architecture
- ► Semi-generic
 - Modular reduction is fully customized per scheme
 - Address controller adapts to # of NTT layers (even or odd)

mode[1:0]	[00]	[01]	[10]	[11]
	NTT/MAC	ADD/SUB	PWM	INTT

Optimized Barrett Reduction

 $a * b \mod q$ u = a * b

Optimized Barrett Reduction

 $\begin{array}{l} \mathbf{Original \ Barrett}} \\ 2^{k} \end{array} \qquad \qquad a * b \bmod q \\ u = a * b \\ \end{array}$

$$m = \left\lfloor \frac{2^k}{q} \right\rfloor$$

$$e = \binom{1/q}{q} - \binom{m}{2^k}; \text{ s.t } e \leq \frac{1}{(q-1)^2}$$

$$n = \frac{2n * n}{u * m} \gg k^2 \cong \text{ quotient } \binom{u/q}{q}$$

 $out \cong u - t * q$

Optimized Barrett Reduction

 $a * b \mod q$ u = a * b

$$m = \left\lfloor \frac{2^k}{q} \right\rfloor$$

$$e = \binom{1}{q} - \binom{m}{2^k}; \text{ s.t } e \leq \frac{1}{(q-1)^2}$$

$$m = \frac{2n * n}{u * m} \gg k \cong \text{ quotient } \binom{u}{q}$$

Original Barrett

 $out \cong u - t * q$

Optimized Barrett Reduction

$$\begin{array}{c} a * b \mod q \\ u = a * b \\ m = \left\lfloor \frac{2^{k}}{q} \right\rfloor \\ e = (1/q) - \binom{m}{2^{k}}; \text{ s.t } e \leq \frac{1}{(q-1)^{2}} \\ n = \frac{2n * n}{t} = \frac{2n * n}{u * m} \gg \frac{2n}{k} \cong \text{ quotient } \binom{u}{q} \\ out \cong u - t * q \end{array}$$

$$\begin{array}{c} a * b \mod q \\ u = a * b \\ u = a * b \\ u = a * b \\ n = \lfloor \log_{2}(q) \rfloor + 1, \ k = 2 * n \\ m = \left\lfloor \frac{2^{k}}{q} \right\rfloor \\ m = \left\lfloor \frac{2^{k}}{q} \right\rfloor \\ \end{array}$$

Optimized Barrett Reduction

 $a * b \mod q$ u = a * b $m = \left\lfloor \frac{2^{k}}{q} \right\rfloor$ $e = (1/q) - (m/2k); \text{ s.t } e \leq 1/(q-1)^{2}$ $\frac{n}{t} = \frac{2n * n}{u * m} \gg \frac{2n}{k} \cong \text{ quotient } (u/q)$ $out \cong u - t * q$

[Kim-19], [Pham-23] $\begin{array}{c}
 Optimized Barrett\\
 n = \lfloor log_2(q) \rfloor + 1, k = 2 * n\\
 m = \left\lfloor \frac{2^k}{q} \right\rfloor\\
 u & 2n\\
 v & n+1\\
 y & n+1\\
 v & n+1\\
 \end{array}$

Optimized Barrett Reduction

 $a * b \mod q$ u = a * b $m = \left\lfloor \frac{2^{k}}{q} \right\rfloor$ $e = (1/q) - (m/2k); \text{ s.t } e \leq 1/(q-1)^{2}$ $\frac{n}{t} = \frac{2n * n}{u * m} \gg \frac{2n}{k} \cong \text{ quotient } (u/q)$ $out \cong u - t * q$

[Kim-19], [Pham-23] **Optimized Barrett** $n = [log_2(q)] + 1$, k = 2 * n $m = \left| \frac{2^k}{q} \right|$ 2nn+112 n+1 $w = v * m \gg (n + 1) \cong \text{quotient} (u/q)$

Optimized Barrett Reduction

 $a * b \mod q$ u = a * b $m = \left\lfloor \frac{2^{k}}{q} \right\rfloor$ $e = (1/q) - (m/2k); \text{ s.t } e \leq 1/(q-1)^{2}$ $\frac{n}{t} = \frac{2n * n}{u * m} \gg \frac{2n}{k} \cong \text{ quotient } (u/q)$ $out \cong u - t * q$

 $a * b \mod q$

u = a * b

Optimized Barrett Reduction

Original Barrett

 Additional multiplications that are expensive in time and hardware

 $e = (1/q) - (m/2k); \text{ s.t } e \le 1/(q-1)^2$

 $\begin{bmatrix} n \\ t \end{bmatrix} = \begin{bmatrix} 2n * n \\ u * m \end{bmatrix} \gg \begin{bmatrix} 2n \\ k \end{bmatrix} \cong \text{quotient} \left(\frac{u}{a} \right)$

UCL Crypto Group

 $m = \left| \frac{2^k}{q} \right|$

 $out \cong u - t * q$

 $a * b \mod q$

Optimized Barrett Reduction

 $\begin{array}{l} \mathbf{Original Barrett} \\ u = a * b \\ m = \left\lfloor \frac{2^k}{q} \right\rfloor \\ e = \left(\frac{1}{q}\right) - \left(\frac{m}{2^k}\right); \text{ s.t } e \leq \frac{1}{(q-1)^2} \\ n \\ t = u * m \gg k \cong \text{ quotient } \binom{u}{q} \end{array}$

 $out \cong u - t * q$

Additional multiplications that are expensive in time and hardware

These multiplications can be done using simple addition, subtraction and shift operations

Memory

Memory

dual-port 36-kbit BRAMs
1024 x 36-bits

n	# of polys
256	16
512	8
1024	4

Address controller

Address controller

- ► How generic is the address controller?
 - The number of NTT levels (log(n)) is even or odd.
 - The NTT fully splits the high-order poly or not (as in Kyber).

Address controller (n = 256)

layer	Ch	L	С	S	
0,1	4	64	1	8	

Address controller (n = 256)

I	_		_				NTT/	INTT			
	layer	Ch	L	C	S	La	iyer 0	La	yer 1		
	0,1	4	64	1	8	[0,128] [1,129]	[64,192] [65,193] 	[0,64] [1,65]	[128,192] [129,193] 	Twiddle Layer 0 [1] [1]	e factor Layer 1 [2] [3]
$r_{a0} = cn$ $r_{a1} = cn$	$t_0 + (cnt)$ $t_0 + (cnt)$	$s_1 \ll S$ $s_1 \ll S$ +	$r_{a2} = L r_{a3} =$	$cnt_0 + (ont_0 + (o$	$cnt_1 \ll S)$ $cnt_1 \ll S)$	L [63,191]] [127,255]	[63,127]	[191,255]		
UCL C	rypto Gro	up 👔	Area	Efficient P	olynomial A	rator for Post-G	Quantum Digita	al Signature	es and KEMs		10/14

Address controller (n = 256)

layer	Ch	L	С	S
0,1	4	64	1	8
2,3	16	16	4	6

Address controller (n = 256)

layer	Ch	L	С	S
0,1	4	64	1	8
2,3	16	16	4	6

NTT/INTT

Lay	er 2	Layer 3			
[0,32]	[16,48]	[0,16]	[32,48]		
[15,47]	[31,63]	[15,31]	[47,63]		
[64,96]	[80,12]	[64,80]	[96,12]		
[79,111]	[95,127]	[79,95]	[111,127]		
[128,160]	[144,176]	[128,144][160,176]		
[143,175]	[159,191]	[143,159] [175,191]		
[192,224]	[208,240]	[192,208][224,240]		
[207,239]	[223,255]	[207,223] [239,255]		

Twiddle factor

Layer 2	Layer 3		
[4] [4] [5] [5]	[8] [9]		
[6] [6] [7] [7]	 [14] [15]		

 $r_{a0} = cnt_0 + (cnt_1 \ll S) \qquad r_{a2} = cnt_0 + (cnt_1 \ll S) + (L \ll 1)$ $r_{a1} = cnt_0 + (cnt_1 \ll S) + L \quad r_{a3} = cnt_0 + (cnt_1 \ll S) + (L \ll 1) + L$

Address controller (n = 256)

Г			· · · · ·							
	layer	Ch	<u> </u>	C	S		Lay	er 2	La	yer 3
	0,1	4	64	1	8		[0,32]	[16,48]	[0,16]	[32,48]
ł		16	16		6	- · ·	[15,47]	[31,63]	[15,31]	[47,63]
l	2,3	01	Ö	4	Ö		[64,96]	[80,12]	[64,80]	[96,12]
							[79,111]	[95,127]	[79,95]	 [111,127]
							[128,160]	[144,176]	[128,144][160,176]
							[143,175]	[159,191]	[143,159] [175,191]
$r_{a0} = cn$	$t_0 + (cnt)$	$(1 \ll S)$	$r_{a2} =$	$cnt_0 + (e$	$cnt_1 \ll S$	$) + (L \ll 1)$	[192,224]	[208,240]	[192,208	[224,240]
$r_{a1} = cn$	$it_0 + (cnt)$	$t_1 \ll S) +$	$-L r_{a3} =$	$cnt_0 + (e)$	$cnt_1 \ll S$	$) + (L \ll 1) + L$	[207,239]	[223,255]	[207,223] [239,255]

NITT/INITT

Twiddle factor

Layer 2	Layer 3		
[4] [4] [5] [5]	[8] [9]		
[6] [6] [7] [7]	 [14] [15]		

 $r_{a0} =$

Address controller (n = 256)

	[]				1	NTT/INTT	
	layer	Ch	L	С	S	Layer 2 La	ayer 3
	0,1	4	64	1	8	[0,32] [16,48] [0,16]	[32,48] Twiddle factor
	2.3	16	16	4	6	[15,47] [31,63] [15,31]	[47,63] Layer 2 Layer 3
$r_{a0} = cr$ $r_{a1} = cr$	$t_0 + (cnt)$	$(1 \ll S)$ $(1 \ll S) +$	$r_{a2} = L r_{a3} = L$	$cnt_0 + ($ $cnt_0 + ($	$cnt_1 \ll S)$ $cnt_1 \ll S)$	1 $\begin{bmatrix} [64,96] \\ [79,111] \end{bmatrix} \begin{bmatrix} [80,12] \\ [64,80] \\ [95,127] \end{bmatrix} \begin{bmatrix} [79,95] \\ [128,160] \\ [144,176] \end{bmatrix} \begin{bmatrix} [128,14] \\ [143,175] \end{bmatrix} \begin{bmatrix} [159,191] \\ [143,159] \end{bmatrix} \begin{bmatrix} [143,159] \\ [192,224] \\ [208,240] \end{bmatrix} \begin{bmatrix} [192,203] \\ [192,223] \end{bmatrix} \begin{bmatrix} [203,255] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \\ [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \\ [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\ [207,223] \\ [207,223] \\ [207,223] \\ [207,223] \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} [207,223] \\$	[96,12] [111,127] [111,127] [5] [5] [5] [5] [6] [6] [14] [15] [7] [7] [14] [15] [7] [7] [14] [15] [7] [7]

Address controller (n = 256)

Address controller (n = 512)

Area Efficient Polynomial Arithmetic Accelerator for Post-Quantum Digital Signatures and KEMs

Address controller: conflict-free memory access

[Zhang-20], [Land-21]

$$Bank = \sum_{i=0}^{\left\lfloor \frac{1}{2}\log(n) \right\rfloor - 1} RawAddr[2i + 1:2i] \mod 4$$

 $RAMAddr = RawAddr \gg 2$

RAMAddr	Bank 0	Bank 1	Bank 2	Bank 3	
0	0	1	2	3	
1	7	4	5	6	
2	10	11	8	9	
3	13	14	15	12	
4	19	16	17	18	
5	22	23 20		21	
6	25	26	27	24	
7	28	29	30	31	
8	34	35	32	33	
9	37	38	39	36	
10	40	41	42	43	
11	47	44	45	46	
12	49	50	51	48	
13	52	53	54	55	
14	59	56	57	58	
15	62	63	60	61	

Performances – Digital Signatures

Dilithium											
	Diotform	Resources				Freq.	Latency (CCs)				
VVOIK	Plationi	LUT	FF	DSP	BRAM	[MHz]	NTT	INTT	PWM		
Nguyen-OA24	A7	7451	5275	0	0	180	319	319			
Land-Cardis21	A7	5676	1218	41	1	311	533	536			
Bekwith-ICFPT21	VUS+	4509	3146	8	0						
Zhao-TCHES22	Z7000	2812	1748	10	2		296	296			
Gupta-TCAS-I23	ZUS+	2759	2037	4	7		606	614	147		
Pham-TCAS-I23	ZUS+	2637	1071	8	1	385	268	268			
Wang-TVLSI22	Z7000	2386	932	8	1	217	264				
Derya-eprint21	A7	2119	1058	8	3	117	1052	1318	3688		
This work	A7	2604	770	4	0	100	519	519	134		

Performances – Digital Signatures cont.

Hawk										
	Diatform		Reso	urces		Freq.	Latency (CCs)			
WORK	Platform	LUT	FF	DSP	BRAM	[MHz]	NTT	INTT	PWM	
Hawk512, p1	A7	3801	1135	8	0	83	1159	1159	262	
Hawk512, p2	A7	3968	1135	8	0	83	1159	1159	262	
Hawk1024, p1	A7	4287	1139	8	0	83	2567	2567	518	
Hawk1024, p2	A7	4451	1139	8	0	83	2567	2567	518	
Raccoon										
Raccoon, q1	A7	3194	912	4	0	83	1159	1159	262	
Raccoon, q2	A7	3458	998	4	0	83	1159	1159	262	

Performances – KEMs/Encryption schemes

Kyber										
Work	Diotform	Resources				Freq.	Latency (CCs)			
	Platform	LUT	FF	DSP	BRAM	[MHz]	NTT	INTT	PWM	
Nguyen,OA24	A7	4834	4683	0	1	250	247	247		
Derya,eprint21	V7	2128	1144	8	3	174	922	1184	3812	
Xing-TCHES21	A7	1579	1058	2	3		512	448	256	
Nguyen-TCAS-I24	A7	1416	1074	2	1.5	227	448	448	256	
Ni-ISCAS23	A7	1154	1031	2	0	300	456	456	265	
Yaman-DATE21	A7	948	352	1	2.5	190	904	904	3359	
Zhang-ISCAS21	A7	609	640	2	4	257	490	490		
This work	A7	1583	458	2	0	100	455	455	134	
Polka										
This work	A7	2512	593	2	0	100	2567	2567	518	

Lattice Isomorphism Problem (LIP)

- ► Two lattices are isomorphic if there exists an orthonormal transformation $\mathcal{O} \in \mathcal{O}_n(\mathbb{R})$ sending one to the other. Finding this transformation, if it exists, is known as the Lattice Isomorphism Problem (LIP).
- ► For any two lattices $\mathcal{L} = \mathcal{L}(B)$, $\hat{\mathcal{L}} = \mathcal{L}(\hat{B})$ where \mathcal{L} has a basis B_Q such that $B_Q^T \cdot B_Q = Q$
 - Two quadratic forms Q, \acute{Q} (also called the Gram matrices) are equivalent if there exists a unimodular U such that $U^T \cdot Q \cdot U = \acute{Q}$.
 - We have that two lattices are isomorphic if and only if their Gram matrices are equivalent.

Convolution-based NTT

Cyclic Convolution-based NTT over the ring R_q = Z_q/(xⁿ - 1)
c = a ⋅ b ∈ R_q, then c = ∑_{k=0}ⁿ⁻¹ c_kx^k, where c_k = ∑_{i=0}^k a_ib_{k-1} + ∑_{i=k+1}ⁿ⁻¹ a_ib_{k+n-i} mod q
Negative Wrapped Convolution-based NTT over the ring R_q = Z_q/(xⁿ + 1)
c = a ⋅ b ∈ R_q, then c = ∑_{k=0}ⁿ⁻¹ c_kx^k, where c_k = ∑_{i=0}^k a_ib_{k-1} - ∑_{i=k+1}ⁿ⁻¹ a_ib_{k+n-i} mod q

How to find the roots of unity?

Why zeta = q - zetas[--k]?

e.g. n = 8 and q = 113

 $35^{-1} \mod 113 = 1/35 \mod 113 = (1+113*13)/35 \mod 113 = 42$ $40^{-1} \mod 113 = 1/40 \mod 113 = (1+113*23)/40 \mod 113 = 65$ $48^{-1} \mod 113 = 1/48 \mod 113 = (1+113*31)/48 \mod 113 = 73$ $71^{-1} \mod 113 = 1/71 \mod 113 = (1+113*49)/71 \mod 113 = 78$ $-71 \mod 113 = 42$ $-48 \mod 113 = 65$ $-40 \mod 113 = 73$ $-35 \mod 113 = 78$

Why zeta = q - zetas[--k]?

e.g. n = 8 and q = 113

 $95^{-1} \mod 113 = 1/95 \mod 113 = (1+113*58)/95 \mod 113 = 69$ $44^{-1} \mod 113 = 1/44 \mod 113 = (1+113*7) / 44 \mod 113 = 18$ -95 mod 113 = 18

 $35^{-1} \mod 113 = 1/35 \mod 113 = (1+113*13)/35 \mod 113 = 42$ $40^{-1} \mod 113 = 1/40 \mod 113 = (1+113*23)/40 \mod 113 = 65$ $48^{-1} \mod 113 = 1/48 \mod 113 = (1+113*31)/48 \mod 113 = 73$ $71^{-1} \mod 113 = 1/71 \mod 113 = (1+113*49)/71 \mod 113 = 78$ $-71 \mod 113 = 42$ $-48 \mod 113 = 65$ $-40 \mod 113 = 73$ $-35 \mod 113 = 78$

e.g. n = 8 and q = 113

 $98^{-1} \mod 113 = 1/98 \mod 113 = (1+113^{*}13)/98 \mod 113 = 15 \longrightarrow -98 \mod 113 = 15$

95⁻¹ mod 113 = 1/95 mod 113 = (1+113*58)/95 mod 113 = 69 44⁻¹ mod 113 = 1/44 mod 113 = (1+113*7) / 44 mod 113 = 18 - 95 mod 113 = 18

35⁻¹ mod 113 = 1/35 mod 113 = (1+113*13)/35 mod 113 = 42 40⁻¹ mod 113 = 1/40 mod 113 = (1+113*23)/40 mod 113 = 65 48⁻¹ mod 113 = 1/48 mod 113 = (1+113*31)/48 mod 113 = 73 71⁻¹ mod 113 = 1/71 mod 113 = (1+113*49)/71 mod 113 = 78 -35 mod 113 = 78

Optimized Barrett Reduction (e.g. Dilithium, n = 23)

$$v * m = v * (2^{23} + 2^{13} + 2^{2} + 2 + 1)$$

= 2¹³ * (2¹⁰v + v) + 2 * (2v + v) + v
v₁
= 2¹⁰v + v = concat{v[23:0] + v[23:10], v[9:0]}
23 ... 10 9 ... 0 v
2¹⁰v
2 * (2v + v) + v = 2 * (2v + v + v[23:1]) + v[0]
v₂ = (v < 1) + v + v[23:1] v₂
v₂
v₂ = (v < 1) + v + v[23:1] v₂
v₂
v * m = 2¹³v₁ + 2v₂ + v[0]
= 2 * (2¹²v₁ + v₂) + v[0]
= concat{v₁ + v₂[25:12], v₂[11:0], v[0]}
v₁₂
w = v * m > 24 = v₁₂[34:11]

SOA - Dilithium

Work	FPGA	BFU	# BFU	Reduction	Config n	Config q	Description
Nguyen-OA24	A7	Radix-2 and Radix-4 multipath delay commutator (MDC)	8/16	K-RED	No	Yes, 23b, 12b	Reordering coefs after each BFU computation
Land-Cardis21	A7	Radix-2 CT/GS	2	Congruency: $2^{23} \equiv 2^{13} + 1 \mod q$	Congruency: $2^{23} \equiv$ No $2^{13} + 1 \mod q$		Heavy use of DSPs with different operation modes 4 BRAMs to store coefs
Bekwith-ICFPT21	VUS+	Radix-4 CT/GS	4	Barrett	No	No	3 BRAMs to store coefs
Zhao-TCHES22	Z7000	Radix-2 MDC	4		No	No	Folding transformation: The first BFU computes the 1 st layer in odd cycles and the 2 nd layer in even cycles.
Gupta-TCAS-/23	ZUS+	Radix-2 CT/GS	2	Congruency: $2^{23} \equiv 2^{13} + 1 \mod q$	No	No	Ping-pong memory access.
Pham-TCAS-123	ZUS+	Radix-4 CT/GS	4	Modified Barrett	No	No	4 BRAMs to store coefs Conflict-free memory access
Wang-TVLSI22	Z7000	Radix-2 and Radix-4 CT/GS	2/4	Congruency: $2^{23} \equiv 2^{13} + 1 \mod q$	No	No	4 BRAMs to store coefs Conflict-free memory access
Derya-eprint21	A7	Radix-2 CT/GS	1/8/32	Montgomery	Yes	Yes	 # of BFU chosen at compile time while the n,q are configured at run time 2 BRAMs for each BFU and 1 BFRAM for TF

SOA - Kyber

Work	FPGA	BFU	# BFU	Reduction	Config n	Config q	Description
Nguyen,OA24	A7	Radix-2 and Radix-4 multipath delay commutator (MDC)	7/14	K-RED	No	Yes, 23b, 12b	Reordering coefs after each BFU computation
Derya,eprint21	V7	Radix-2 CT/GS	1/8/32	Montgomery	Yes	Yes	 # of BFU chosen at compile time while the n,q are configured at run time 2 BRAMs for each BFU and 1 BFRAM for TF 4 DSPs in multiplication and 4 DSPs in modular reduction
Xing-TCHES21	A7	Radix-2 CT/GS	2	Adapted Barrett	No	No	
Nguyen-TCAS-/24	A7	Radix-2 CT/GS	2	LUT	No	No	Reordering of poly coef instead of changing the addr.
Ni-ISCAS23	A7	Radix-2 CT/GS	2	K-RED + LUT	No	No	Reordering of poly coef instead of changing the addr.
Yaman-DATE21	A7	Radix-2 CT/GS	1/4/16	Congruency: 2^{23} $\equiv 2^{13} + 1 \mod q$	No	No	A changing memory read pattern for efficient memory management.
Zhang-ISCAS21	A7	Radix-2 and Radix-4 CT/GS	2/4	Congruency: 2^{23} $\equiv 2^{13} + 1 \mod q$	No	No	Ping-pong memory access.

Digital signature output sizes

	C	Dilithium			wk	Raccoon		
NIST security level	2	3	5	1	5	1	3	5
Public key size (B)	1312	1952	2592	1024	2440	2256	3160	4064
Signature size (B)	2420	3293	4595	555	1221	11524	14544	20330
Private key size (B)	2528	4128	4864	184	360	14800*	18840*	26016*

* The values given are for unprotected Raccoon and they increase slightly as the masking order increases.

