Practical Second-Order CPA Attack on Ascon with Proper Selection Function

- Viet-Sang Nguyen
- joint work with Vincent Grosso and Pierre-Louis Cayrel
 - CASCADE Conference
 - Saint-Etienne, 2 April, 2025

Lightweight cryptography competition

2018 Lightweight cryptography competition

2023 Selected Ascon

Lightweight cryptography competition

Selected Ascon

2023

Lightweight cryptography competition

Selected Ascon

Possible attacks

Secure implementations

In this talk

Possible attacks

З

In this talk

Possible attacks

Correlation Power Analysis (CPA) attack

In this talk

Possible attacks

Correlation Power Analysis (CPA) attack

Choose attack point: intermediate variable v

• Choose attack point: intermediate variable v Selection function: v = f(d, k)

known non-constant data[.]

- Choose attack point: intermediate variable v Selection function: v = f(d, k)
 - known non-constant data
 - Well-known CPA on AES: v = Sbox(plaintext, key)

part of the key

- Choose attack point: intermediate variable v Selection function: v = f(d, k)
 - known non-constant data
 - Well-known CPA on AES: v = Sbox(plaintext, key)
- Choose leakage model for v

part of the key

- Choose attack point: intermediate variable v Selection function: v = f(d, k)
 - known non-constant data-
 - Well-known CPA on AES: v = Sbox(plaintext, key)
- Choose leakage model for v This work: Hamming weight

part of the key

- Choose attack point: intermediate variable v Selection function: v = f(d, k)
 - known non-constant data
 - Well-known CPA on AES: v = Sbox(plaintext, key)
- Choose leakage model for v This work: Hamming weight

part of the key

Hypothetical power consumption: h = HW(v) = HW(f(d, k))

Measure power consumption traces and record d

Measure power consumption traces and record d

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

 $h = \mathsf{HW}\left(f(d,k)\right)$

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

 Compare with measured power consumption

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

8

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

- Compare with measured power consumption
 - Linearity relationship with Pearson's correlation coefficient

$$h = HW (f(d, k))$$

$$k_{1} \quad k_{2} \quad k_{3} \quad k_{4}$$

$$d_{1} \quad h_{11} \quad h_{12} \quad h_{13} \quad h_{14}$$

$$d_{2} \quad h_{21} \quad h_{22} \quad h_{23} \quad h_{24}$$

$$d_{3} \quad h_{31} \quad h_{32} \quad h_{33} \quad h_{34}$$

$$d_{4} \quad h_{41} \quad h_{42} \quad h_{43} \quad h_{44}$$

$$h_{51} \quad h_{52} \quad h_{53} \quad h_{54}$$

- Measure power consumption traces
 and record d
- Compute hypothetical power consumption

 Compare with measured power consumption

Linearity relationship with Pearson's correlation coefficient

$$h = HW (f(d, k))$$

$$k_{1} \quad k_{2} \quad k_{3} \quad k_{4}$$

$$d_{1} \quad h_{11} \quad h_{12} \quad h_{13} \quad h_{14}$$

$$d_{2} \quad h_{21} \quad h_{22} \quad h_{23} \quad h_{24}$$

$$d_{3} \quad h_{31} \quad h_{32} \quad h_{33} \quad h_{34}$$

$$d_{4} \quad h_{41} \quad h_{42} \quad h_{43} \quad h_{44}$$

$$h_{51} \quad h_{52} \quad h_{53} \quad h_{54}$$

Initialization

Associated Data

Plaintext

Permutation blocks

 $\blacktriangleright p^a$: 12 rounds • p^b : 6 rounds

Key (128 bits)

Nonce (128 bits)

Initialization vector

Plaintext

Associated data

Initialization

Associated Data

Plaintext

Plaintext / Ciphertext

Initialization

Associated Data

Plaintext

Verification Tag

Initialization

Associated Data

Plaintext

Existing CPA attacks on Ascon

Selection function v = f(d, k)

Initialization

Associated Data

Plaintext

Selection function v = f(d, k)

Plaintext

Selection function v = f(d, k)

intermediate variable v in the first round

round computation

On 320-bit state = 5×64 -bit words

On 320-bit state = 5 x 64-bit words

On 320-bit state = 5×64 -bit words

- 128-bit key $: K = (k_0, k_1)$
- 128-bit nonce $: N = (n_0, n_1)$
- 64-bit init. vector : IV

On 320-bit state = 5×64 -bit words

- 128-bit key $: K = (k_0, k_1)$
- 128-bit nonce $: N = (n_0, n_1)$
- 64-bit init. vector : IV

On 320-bit state = 5×64 -bit words

- 128-bit key $: K = (k_0, k_1)$
- 128-bit nonce $: N = (n_0, n_1)$
- 64-bit init. vector : IV

On 320-bit state = 5×64 -bit words

- 128-bit key $: K = (k_0, k_1)$
- 128-bit nonce $: N = (n_0, n_1)$
- 64-bit init. vector : IV

On 320-bit state = 5×64 -bit words

Input of the first round:

- 128-bit key $: K = (k_0, k_1)$
- 128-bit nonce $: N = (n_0, n_1)$
- 64-bit init. vector : IV

(3) Linear diffusion (horizontal)

State changes

State changes

State changes

Ramezanpour et al., 2020

Choose Sbox output as attack point

Ramezanpour et al., 2020

Choose Sbox output as attack point

• Intermediate variable: y_0^j

Ramezanpour et al., 2020

Choose Sbox output as attack point

• Intermediate variable: y_0^j

→ Failed (with 40K traces)

Sbox input

Ramezanpour et al., 2020

Choose Sbox output as attack point

• Intermediate variable: y_0^j

→ Failed (with 40K traces)

Ramezanpour et al., 2020

Choose Sbox output as attack point

• Intermediate variable: y_0^j

→ Failed (with 40K traces)

• Intermediate variable: $(y_0^j | y_1^j | y_2^j | y_3^j | y_4^j)$ HW of Sbox output

Ramezanpour et al., 2020

Choose Sbox output as attack point

• Intermediate variable: y_0^j

→ Failed (with 40K traces)

• Intermediate variable: $(y_0^j | y_1^j | y_2^j | y_3^j | y_4^j)$ HW of Sbox output

→ Failed (with 40K traces)

Samwel and Daemen, 2018

Choose linear diffusion output as attack point

Samwel and Daemen, 2018

Choose linear diffusion output as attack point

Intermediate variable: z_0^j

Samwel and Daemen, 2018

Choose linear diffusion output as attack point

Intermediate variable: z_0^j

Fine-tune computation: $z_0^j \rightarrow \tilde{z}_0^j$

Samwel and Daemen, 2018

Choose linear diffusion output as attack point

Intermediate variable: z_0^j

Fine-tune computation: $z_0^j \rightarrow \tilde{z}_0^j$

→ Succeeded

What are the reasons of this difference ?

In an Sbox computation y_0^j :

- 2 bits of key : (k_0^j, k_1^j)
- 2 bits of nonce : (n_0^j, n_1^j)

In an Sbox computation y_0^J :

- 2 bits of key $: (k_0^j, k_1^j)$
- 2 bits of nonce : (n_0^j, n_1^j)

 $y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j | \forall^j \oplus k_1^j \oplus | \forall^j$

In an Sbox computation y_0^j :

- 2 bits of key $: (k_0^j, k_1^j)$
- 2 bits of nonce : (n_0^j, n_1^j)

 $y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j | \forall^j \oplus k_1^j \oplus | \forall^j$

	(k_0^j,k_1^j)					
(n_0^j,n_1^j)	(0,0)	(0,1)	(1,0)	(1,1)		
(0,0)	0	1	1	1		
(0,1)	0	1	0	0		
(1,0)	1	0	0	0		
(1,1)	1	0	1	1		
Correlation	_	1	-	l		

In an Sbox computation y_0^j :

- 2 bits of key $: (k_0^j, k_1^j)$
- 2 bits of nonce : (n_0^j, n_1^j)

 $y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j | \forall^j \oplus k_1^j \oplus | \forall^j$

	(k_0^j,k_1^j)				
(n_0^j,n_1^j)	(0,0)	(0,1)	(1,0)	(1,1)	
(0,0)	0	1	1	1	
(0,1)	0	1	0	0	
(1,0)	1	0	0	0	
(1,1)	1	0	1	1	
Correlation	_	1		l	

→ We cannot obtain unique (correct) key candidate

Correlation traces for all key candidates

(c) $(k_0^j, k_1^j) = (1, 0)$

(b)
$$(k_0^j, k_1^j) = (0, 1)$$

Correlations of distributions associated to all key pairs

(k_0^j,k_1^j)	$(0,\!0)$	(0,1)	$(1,\!0)$	(1, 1)
(0,0)	1	1	-	-
(0,1)	1	1	-	-
(1,0)	-	-	1	1
(1,1)	-	-	1	1
		y_0^j		

Correlations of distributions associated to all key pairs

$\left[(k_0^j,k_1^j) ight]$	$(0,\!0)$	(0,1)	(1,0)	(1,1)			
(0,0)	1	1	-	-			
(0,1)	1	1	-	-			
(1,0)	-	-	1	1			
(1,1)	-	-	1	1			
		y_0^j					
$\left(k_0^j,k_1^j ight)$	(0,0)	(0,1)	(1,0)	(1,1)			
(0,0)	1	1	1	1			
(0,1)	1	1	1	1			
(1,0)	1	1	1	1			
(1,1)	1	1	1	1			
y_2^j and y_3^j							

$ig (k_0^j,k_1^j)$	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	1	-	-	1
(0,1)	-	1	1	-
(1,0)	-	1	1	-
(1,1)	1	-	-	1
		y_1^j		
k_0^j	()		L
0]		()
1	0			
		y_4^j		

Hamming weight of Sbox output: $HW(y_0^j | y_1^j | y_2^j | y_3^j | y_4^j)$

Hamming weight of Sbox output: $HW(y_0^j | y_1^j | y_2^j | y_3^j | y_4^j)$

Correlations of distributions associated to all key pairs

))	(0,1)	(1,0)	(1,1)
0	0.15	0.89	0.87
5	1.00	0.48	0.09
9	0.48	1.00	0.90
7	0.09	0.90	1.00

Hamming weight of Sbox output: $HW(y_0^J | y_1^J | y_2^J | y_3^J | y_4^J)$

Correlations of distributions associated to all key pairs

Hamming weight of Sbox output: $HW(y_0^J | y_1^J | y_2^J | y_3^J | y_4^J)$

Correlations of distributions associated to all key pairs

 \rightarrow Not effective for CPA attacks

Hamming weight of Sbox output: $HW(y_0^j | y_1^j | y_2^j | y_3^j | y_4^j)$

Correlations of distributions associated to all key pairs

This may explain why

 \rightarrow Not effective for CPA attacks

 $y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j | \mathsf{V}^j \oplus k_1^j \oplus | \mathsf{V}^j$

 $y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j \mathbb{W}^j \oplus k_1^j \oplus \mathbb{W}^j$$
$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j \mathbb{W}^j \oplus k_1^j \oplus \mathbb{W}^j$$
$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$
$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

	k	j_0
(n_0^j,n_1^j)	0	1
(0,0)	0	1
(0,1)	0	0
(1,0)	1	0
(1,1)	1	1
Correlation	()

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j \mathbb{W}^j \oplus k_1^j \oplus \mathbb{W}^j$$
$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_0^{j+36} = k_0^{j+36} (n_1^{j+36} \oplus 1) \oplus n_0^{j+36}$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_0^{j+36} = k_0^{j+36} (n_1^{j+36} \oplus 1) \oplus n_0^{j+36}$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_{0}^{j+36} = k_{0}^{j+36} (n_{1}^{j+36} \oplus 1) \oplus n_{0}^{j+36}$$
$$\tilde{y}_{0}^{j+45} = k_{0}^{j+45} (n_{1}^{j+45} \oplus 1) \oplus n_{0}^{j+45}$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_{0}^{j+36} = k_{0}^{j+36} (n_{1}^{j+36} \oplus 1) \oplus n_{0}^{j+36}$$
$$\tilde{y}_{0}^{j+45} = k_{0}^{j+45} (n_{1}^{j+45} \oplus 1) \oplus n_{0}^{j+45}$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_{0}^{j+36} = k_{0}^{j+36} (n_{1}^{j+36} \oplus 1) \oplus n_{0}^{j+36}$$
$$\tilde{y}_{0}^{j+45} = k_{0}^{j+45} (n_{1}^{j+45} \oplus 1) \oplus n_{0}^{j+45}$$

Linear computation:

$$\tilde{z}_0^j = \tilde{y}_0^j \oplus \tilde{y}_0^{j+36} \oplus \tilde{y}_0^{j+45}$$

XOO

S

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Similarly:

$$\tilde{y}_{0}^{j+36} = k_{0}^{j+36} (n_{1}^{j+36} \oplus 1) \oplus n_{0}^{j+36}$$
$$\tilde{y}_{0}^{j+45} = k_{0}^{j+45} (n_{1}^{j+45} \oplus 1) \oplus n_{0}^{j+45}$$

Linear computation:

$$\begin{split} \tilde{z}_{0}^{j} &= \tilde{y}_{0}^{j} \oplus \tilde{y}_{0}^{j+36} \oplus \tilde{y}_{0}^{j+45} \\ \tilde{z}_{0}^{j} &= k_{0}^{j} (n_{1}^{j} \oplus 1) \oplus n_{0}^{j} \\ &\oplus k_{0}^{j+36} (n_{1}^{j+36} \oplus 1) \oplus n_{0}^{j+36} \\ &\oplus k_{0}^{j+45} (n_{1}^{j+45} \oplus 1) \oplus n_{0}^{j+45} \end{split}$$

S

$$\begin{split} \tilde{z}_0^j &= k_0^j (n_1^j \oplus 1) \oplus n_0^j \\ &\oplus k_0^{j+36} (n_1^{j+36} \oplus 1) \oplus n_0^{j+36} \\ &\oplus k_0^{j+45} (n_1^{j+45} \oplus 1) \oplus n_0^{j+45} \end{split}$$

Correlations of distributions associated to all key pairs

$\left[{\begin{array}{*{20}c} (k_0^j,k_0^{j+36},k_0^{j+45}) \ {}_{\!$	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	$(1,\!1,\!1)$
(0,0,0)	1	-	-	-	-	-	-	-
(0,0,1)	-	1	-	-	-	-	-	-
(0,1,0)	-	-	1	-	-	-	-	-
(0,1,1)	-	-	-	1	-	-	-	-
(1,0,0)	-	-	-	-	1	-	-	-
(1,0,1)	-	-	-	-	-	1	-	-
(1,1,0)	-	-	-	-	-	-	1	-
(1,1,1)	-	-	-	-	-	-	-	1

$$\begin{split} \tilde{z}_0^j &= k_0^j (n_1^j \oplus 1) \oplus n_0^j \\ &\oplus k_0^{j+36} (n_1^{j+36} \oplus 1) \oplus n_0^{j+36} \\ &\oplus k_0^{j+45} (n_1^{j+45} \oplus 1) \oplus n_0^{j+45} \end{split}$$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Sbox ou

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Software implementation:

Can we use \tilde{y}_0^j as attack point ?

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Samwel and Daemen, 2018

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j = \begin{cases} n_0^j & \text{if } k_0^j = 0, \\ n_0^j \oplus n_1^j \oplus 1 & \text{if } k_0^j = 1. \end{cases}$$

39

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j = \begin{cases} n_0^j & \text{if } k_0^j = 0, \\ n_0^j \oplus n_1^j \oplus 1 & \text{if } k_0^j = 1. \end{cases} \rightarrow$$

Correlated with activity of n_0

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus W^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j = \begin{cases} n_0^j & \text{if } k_0^j = 0, & \rightarrow \\ n_0^j \oplus n_1^j \oplus 1 & \text{if } k_0^j = 1. & \rightarrow \end{cases}$$

Correlated with activity of n_0 Correlated with activity of $n_0 \oplus n_1$

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j = \begin{cases} n_0^j & \text{if } k_0^j = 0, & \rightarrow \\ n_0^j \oplus n_1^j \oplus 1 & \text{if } k_0^j = 1. & \rightarrow \end{cases}$$

- Correlated with activity of n_0
- Correlated with activity of $n_0 \oplus n_1$

0.5

Absolute correlation

0.1

$$y_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j \oplus k_1^j k_0^j \oplus k_0^j W^j \oplus k_1^j \oplus V^j$$

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j$$

Hardware implementation with register at linear layer output (z_0^j)

Software implementation: Can we use \tilde{y}_0^j as attack point ?

$$\tilde{y}_0^j = k_0^j (n_1^j \oplus 1) \oplus n_0^j = \begin{cases} n_0^j & \text{if } k_0^j = 0, & \rightarrow \\ n_0^j \oplus n_1^j \oplus 1 & \text{if } k_0^j = 1. & \rightarrow \end{cases}$$

→ Not effective for CPA attacks

- Correlated with activity of n_0
- Correlated with activity of $n_0 \oplus n_1$

0.5

Absolute correlation

0.1

0.0

The best choice

for both hardware and software implementations

Samwel and Daemen, 2018

$$\begin{split} \tilde{z}_0^j &= k_0^j (n_1^j \oplus 1) \oplus n_0^j \\ &\oplus k_0^{j+36} (n_1^{j+36} \oplus 1) \oplus n_0^{j+36} \\ &\oplus k_0^{j+45} (n_1^{j+45} \oplus 1) \oplus n_0^{j+45} \end{split}$$

40

Second-Order CPA attack

Masked software implementations with 2 shares by Ascon team

https://github.com/ascon/simpleserial-ascon

	ascon / simpleserial-ascon	Q	Type 🕖 to search	ri (O) (r
<> Code	O Issues ┆ Pull requests ▷ Actions	rojects 민 Security 🗠 Insights		
	simpleserial-ascon Public		⊙ Watch 7 -	♀ Fork 2 → ★ Starred 11 →
		Q Go to file t Add file -	<> Code -	About
	Bachlaeffer Add more t-test results	ca4a609 · 3 years ago	19 Commits	Masked Ascon Software Implementations
	Documents	Use single jupyter notebook for plain and shared interface	3 years ago	🔗 ascon.iaik.tugraz.at/
	Implementations/crypto_aead/ascon128v12	Add initial version of masked Ascon implementations	3 years ago	C Readme
	jupyter	Note that SS_VER_2_1 only works on the CW develop bra	3 years ago	▲ CC0-1.0 license -∿- Activity

Power consumption of the first 12 rounds from ChipWhisperer ARM with Cortex-M3 core:

Power consumption of the first 12 rounds from ChipWhisperer ARM with Cortex-M3 core:

Verify first-order leakage by TVLA:

Combine two points on the trace (by normalized product)

Combine two points on the trace (by normalized product)

Combine two points on the trace (by normalized product)

Optimizations:

• Attack point at linear layer output

Combine two points on the trace (by normalized product)

Optimizations:

• Attack point at linear layer output

Combine two points on the trace (by normalized product)

Optimizations:

• Attack point at linear layer output

→ focus on the right part of the trace

Combine two points on the trace (by normalized product)

- Attack point at linear layer output
 - → focus on the right part of the trace
- Two shares occur in a time span

Combine two points on the trace (by normalized product)

- Attack point at linear layer output
 - → focus on the right part of the trace
- Two shares occur in a time span

Combine two points on the trace (by normalized product)

- Attack point at linear layer output
 - → focus on the right part of the trace
- Two shares occur in a time span
 - \rightarrow parameter window w

Combine two points on the trace (by normalized product)

Optimizations:

- Attack point at linear layer output
 - → focus on the right part of the trace
- Two shares occur in a time span
 - \rightarrow parameter window w

Our attack considers the last 350 samples w = 50

Correlation traces

45

Correlation traces

Correlation peak

Results

Correlation with increasing number of traces

47

Each CPA run recovers 3 key bits

Each CPA run recovers 3 key bits

How many CPA runs to recover 128 key bits?

Each CPA run recovers 3 key bits

How many CPA runs to recover 128 key bits?

Weissbart and Picek, 2023

63 CPA runs

Each CPA run recovers 3 key bits

How many CPA runs to recover 128 key bits?

Weissbart and Picek, 2023

63 CPA runs

This work:

- formalizes a set cover problem
- uses a SAT solver

Each CPA run recovers 3 key bits

How many CPA runs to recover 128 key bits?

Weissbart and Picek, 2023

63 CPA runs

This work:

- formalizes a set cover problem
- uses a SAT solver
- → 47 CPA runs (optimal)

Full-key recovery

48

A COLOR DA DI DI CALLANDE

Full-key recovery

Success rates

Full-key recovery

360K traces ensure 100% success rates Recover full key in 4.7 hours

Success rates

Quadratic boolean Sbox function choose the selection function carefully

50

Quadratic boolean Sbox function choose the selection function carefully

Optimal number of CPA runs for full-key recovery: 47

Quadratic boolean Sbox function choose the selection function carefully

Optimal number of CPA runs for full-key recovery: 47

Practical Second-Order CPA Attack on Ascon with Proper Selection Function

- Viet-Sang Nguyen
- joint work with Vincent Grosso and Pierre-Louis Cayrel
 - CASCADE Conference
 - Saint-Etienne, 2 April, 2025

