SAFETY & SECURITY

The Dangerous Message/Key Swap in HMAC

02/04/2025 CASCADE

Antoine Wurcker, David Marçais

SECURE YOUR FUTURE

Summary

Introduction SHA-2 **HMAC** State-of-the-Art Early Attacks Partial Attack **Complete Attack Our Contributions** Cost Reducing Shifting Start Swapped Message/Key Conclusion

Summary

Introduction: SHA-2

Introduction SHA-2

SHA-2 (256) Global Scheme

S

SHA-2 (256) *IV* and Message Transformation

∜ $\{W_0, \ldots, W_{15}\}$ $\Downarrow T \Downarrow$ $\{W_{16},\ldots,W_{63}\}$

S

SHA-2 (256) One Round in *f*

B_{i+1}	=	A_i
C_{i+1}	=	Bi
D_{i+1}	=	Ci

$$F_{i+1} = E_i$$

$$G_{i+1} = F_i$$

$$H_{i+1} = G_i$$

S

4/22

SHA-2 (256) One Round in *f*

$$E_{i+1} = K_i + W_i + H_i$$

+ $\mathscr{C}(E_i, F_i, G_i)$
+ $\Sigma_1(E_i) + D_i$

$$egin{array}{rcl} A_{i+1} &=& K_i + W_i + H_i \ &+ \mathscr{C}(E_i,F_i,G_i) \ &+ \Sigma_1(E_i) + \Sigma_0(A_i) \ &+ \mathscr{M}(A_i,B_i,C_i) \end{array}$$

S

Summary

Introduction: HMAC

Introduction **HMAC**

HMAC (SHA-2-256) Global Scheme

HMAC (SHA-2-256) Global Scheme

Classical HMAC Usage

Known Constant Known Variable Unknown Constant Unknown Variable

 $V \\ \downarrow \\ \{A_0, B_0, C_0, D_0, E_0, F_0, G_0, H_0\}$

ECURE YOUR FUTUF

Summary

State-of-the-Art: Early Attacks

State-of-the-Art Early Attacks

Early Attacks MTMM07 & BBDGR13

One example of this kind of attack requires leakage on:

- \blacktriangleright A_i values.
- \blacktriangleright E_i values.
- ▶ "and" sub-operations in Choice (𝒞).
- ▶ "and" sub-operations in Majority (\mathcal{M}) .

8 attacks gives 8 equations with 8 unknown constants \Rightarrow S_i can be recovered.

Early Attacks Outer Hash: Same Attack

S

Summary

State-of-the-Art: Partial Attack

State-of-the-Art Partial Attack

Partial Attack On HMAC Slides RM13

This attack requires leakage on:

- \blacktriangleright A_i values.
- \blacktriangleright E_i values.
- ▶ "and" sub-operations in Choice (*C*).
- ▶ "and" sub-operations in Majority (*M*).

RM13 suggests to avoid harder to obtain leakage on "and".

Partial Attack On HMAC Slides RM13

This attack requires leakage on:

- \blacktriangleright A_i values.
- \blacktriangleright E_i values.
- ▶ "and" sub-operations in Choice (*C*).
- ▶ "and" sub-operations in Majority (*M*).

RM13 suggests to avoid harder to obtain leakage on "and". In counterpart:

- ► Message must be partially chosen.
- \blacktriangleright \Rightarrow Cannot be applied on outer hash.

Partial Attack On HMAC Leakages Requirements

Same leakage on four rounds. Performed on four sets.

Set	Target	Constant	Variable
#1	$A_1 \& E_1$	Ø	W_0
#2	$A_2 \& E_2$	W ₀	W_1
#3	A ₃ & E ₃	W_0, W_1	W_2
#4	A ₄ & E ₄	W_0, W_1, W_2	W_3

S

Known Constant Known Variable Unknown Constant Unknown Variable

First Set:

 $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$

 $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$ What if we continue on first set ? $E_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + C_{0} + K_{1} + W_{1}$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$ What about \mathscr{C} and \mathscr{M} that combine Known Variable and Unknown Constant?

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ $A_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + \Sigma_0(A_0) + \mathscr{M}(A_0, B_0, C_0) + K_0 + W_0$ What if we continue on first set ? $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ $A_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + \Sigma_0(A_1) + \mathscr{M}(A_1, A_0, B_0) + K_1 + W_1$ What about \mathscr{C} and \mathscr{M} that combine Known Variable and Unknown Constant? \Rightarrow Cannot attack because Unknown Variable

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$ What if we continue on first set ? $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$ What about *C* and *M* that combine Known Variable and Unknown Constant? \Rightarrow Cannot attack because Unknown Variable Solution: New set with fixed W_0 to Known Constant \Rightarrow E₁ and A₁ change from Known Variable to Known Constant

 \Rightarrow ${\mathscr C}$ and ${\mathscr M}$ change from Unknown Variable became Unknown Constant

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$ Second Set: $E_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + C_{0} + K_{1} + W_{1}$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$ Second Set: $E_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + C_{0} + K_{1} + W_{1}$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$ Third Set: $E_{3} = F_{0} + \Sigma_{1}(E_{2}) + \mathscr{C}(E_{2}, E_{1}, E_{0}) + B_{0} + K_{2} + W_{2}$

 $A_{3} = F_{0} + \Sigma_{1}(E_{2}) + \mathscr{C}(E_{2}, E_{1}, E_{0}) + \Sigma_{0}(A_{2}) + \mathscr{M}(A_{2}, A_{1}, A_{0}) + K_{2} + W_{2}$

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ $A_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + \Sigma_0(A_0) + \mathscr{M}(A_0, B_0, C_0) + K_0 + W_0$ Second Set: $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$ Third Set $E_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + B_0 + K_2 + W_2$ $A_3 = F_0 + \Sigma_1(E_2) + C(E_2, E_1, E_0) + \Sigma_0(A_2) + \mathcal{M}(A_2, A_1, A_0) + K_2 + W_2$ Fourth Set: $E_4 = E_0 + \sum_1 (E_3) + \mathscr{C}(E_3, E_2, E_1) + A_0 + K_3 + W_3$ $A_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + \Sigma_0(A_3) + \mathscr{M}(A_3, A_2, A_1) + K_3 + W_3$

S

Partial Attack On HMAC Outer Hash

Described attack requires chosen message:

- ▶ Works on inner hash in chosen message context.
- ▶ Does not work on outer hash (only known, not chosen).

This is why it is a partial attack.

Summary

State-of-the-Art: Complete Attack

State-of-the-Art **Complete Attack**

Complete Attack On HMAC Schuhmacher22

This attack uses the partial attack on Inner hash. Then proposes usage of same leakage $(A_i \& E_i)$ on last rounds of outer hash. This requires:

- \blacktriangleright A_i leakage.
- \blacktriangleright E_i leakage.
- ▶ Chosen message context (partial attack requirement).
- ► Known MAC.

Detailed equations in the paper.

Summary

Our Contributions: Cost Reducing

Our Contributions Cost Reducing

Reducing State-of-the-Art Attacks Cost Reminder of State-of-the-Art

Known Constant Known Variable Unknown Constant Unknown Variable

```
First Set:
E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0
A_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + \Sigma_0(A_0) + \mathscr{M}(A_0, B_0, C_0) + K_0 + W_0
Second Set:
E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1
A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}
Third Set:
E_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + B_0 + K_2 + W_2
A_3 = F_0 + \Sigma_1(E_2) + C(E_2, E_1, E_0) + \Sigma_0(A_2) + M(A_2, A_1, A_0) + K_2 + W_2
Fourth Set:
E_4 = E_0 + \sum_1 (E_3) + \mathscr{C}(E_3, E_2, E_1) + A_0 + K_3 + W_3
A_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + \Sigma_0(A_3) + \mathscr{M}(A_3, A_2, A_1) + K_3 + W_3
```

S

Reducing State-of-the-Art Attacks Cost Do Not Make Fourth Set!

Known Constant Known Variable Unknown Constant Unknown Variable

First Set: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ $A_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + \Sigma_0(A_0) + \mathscr{M}(A_0, B_0, C_0) + K_0 + W_0$ Second Set: $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ $A_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + \Sigma_{0}(A_{1}) + \mathscr{M}(A_{1}, A_{0}, B_{0}) + K_{1} + W_{1}$ Third Set: $E_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + B_0 + K_2 + W_2$ $A_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + \Sigma_0(A_2) + \mathscr{M}(A_2, A_1, A_0) + K_2 + W_2$ Third Set Again (W_2 not fixed $\Rightarrow A_3$ and E_3 remain Known Variable): $E_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + A_0 + K_3 + W_3$ $A_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + \Sigma_0(A_3) + \mathscr{M}(A_3, A_2, A_1) + K_3 + W_3$

S

Reducing State-of-the-Art Attacks Cost Do Not Make Fourth Set!

Fourth set not required $\Rightarrow {\sim}25\%$ reduced number of traces.

Summary

Our Contributions: Shifting Start

Our Contributions Shifting Start

Partial attack requires leakage on 4 first rounds.

Partial attack requires leakage on 4 first rounds.

If countermeasure protects the 4 first rounds \Rightarrow Attack thwarted.

Partial attack requires leakage on 4 first rounds.

If countermeasure protects the 4 first rounds \Rightarrow Attack thwarted.

Our solution:

▶ Fix the 4 first message blocks W_0 , W_1 , W_2 , W_3

Partial attack requires leakage on 4 first rounds.

If countermeasure protects the 4 first rounds \Rightarrow Attack thwarted.

Our solution:

- Fix the 4 first message blocks W_0, W_1, W_2, W_3
- This fixes $\{A_4, \ldots, H_4\}$.

Partial attack requires leakage on 4 first rounds.

If countermeasure protects the 4 first rounds \Rightarrow Attack thwarted.

Our solution:

- ▶ Fix the 4 first message blocks W_0 , W_1 , W_2 , W_3
- ► This fixes $\{A_4, \ldots, H_4\}$.
- ► Same attack is performed on rounds 4 to 8.

Partial attack requires leakage on 4 first rounds.

If countermeasure protects the 4 first rounds \Rightarrow Attack thwarted.

Our solution:

- Fix the 4 first message blocks W_0, W_1, W_2, W_3
- ▶ This fixes $\{A_4, \ldots, H_4\}$.
- ► Same attack is performed on rounds 4 to 8.

 $\{A_4,\ldots,H_4\}$ is combined with W_0, W_1, W_2, W_3 to reveal $\{A_0,\ldots,H_0\}$

Summary

Our Contributions: Swapped Message/Key

Our Contributions Swapped Message/Key

Attack in Swapped Message/Key Scenario Reminder: Classical HMAC Usage

Attack in Swapped Message/Key Scenario Reminder: Classical HMAC Usage

Attack in Swapped Message/Key Scenario Swapped HMAC Usage

Known Constant Known Variable Unknown Constant Unknown Variable

18/22

Known Constant Known Variable Unknown Constant Unknown Variable

Reminder of previous attacks: First Round:

 $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$

Known Constant Known Variable Unknown Constant Unknown Variable

Reminder of previous attacks: First Round:

 $E_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + D_{0} + K_{0} + W_{0}$ $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$

Swapped Messsage/Key context: First Round: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$

 $A_{1} = H_{0} + \Sigma_{1}(E_{0}) + \mathscr{C}(E_{0}, F_{0}, G_{0}) + \Sigma_{0}(A_{0}) + \mathscr{M}(A_{0}, B_{0}, C_{0}) + K_{0} + W_{0}$

Known Constant Known Variable Unknown Constant Unknown Variable

Both equations for A and E give the same information, only one is necessary. First Round:

 $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$

First Round: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ Second Round: $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ Known Constant Known Variable Unknown Constant Unknown Variable

19/22

First Round:

 $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ Second Round: $E_{2} = G_{0} + \Sigma_{1}(E_{1}) + \mathscr{C}(E_{1}, E_{0}, F_{0}) + C_{0} + K_{1} + W_{1}$ Third Round: $E_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + B_0 + K_2 + W_2$

First Round: $E_1 = H_0 + \Sigma_1(E_0) + \mathscr{C}(E_0, F_0, G_0) + D_0 + K_0 + W_0$ Second Round: $E_2 = G_0 + \Sigma_1(E_1) + \mathscr{C}(E_1, E_0, F_0) + C_0 + K_1 + W_1$ Third Round: $E_3 = F_0 + \Sigma_1(E_2) + \mathscr{C}(E_2, E_1, E_0) + B_0 + K_2 + W_2$ Fourth Round:

 $E_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + A_0 + K_3 + W_3$

First Round: $E_1 = H_0 + \Sigma_1(E_0) + C(E_0, F_0, G_0) + D_0 + K_0 + W_0$ Second Round: $E_2 = G_0 + \Sigma_1(E_1) + C(E_1, E_0, F_0) + C_0 + K_1 + W_1$ Third Round: $E_3 = F_0 + \Sigma_1(E_2) + C(E_2, E_1, E_0) + B_0 + K_2 + W_2$ Fourth Round:

 $E_4 = E_0 + \Sigma_1(E_3) + \mathscr{C}(E_3, E_2, E_1) + A_0 + K_3 + W_3$

And so on if necessary...

S

Attack in Swapped Message/Key Scenario Advantages and Drawbacks

Advantages:

- ▶ Only needs A_i **OR** E_i leakages.
- ► Recovered data is directly the key.
- ▶ No need to attack outer hash.

Drawbacks:

- ▶ Requires a swapped Message/Key context. (e.g. HKDF)
- ► Value recovery is dependent of the success of recovery of the previous one.

Summary

Conclusion:

Conclusion

Conclusion

- ► Swapping Message and key roles can be dangerous in HMAC.
- ► Should be studied on other algorithms.
- $\blacktriangleright\,$ Potential trace number reduction of state of the art attacks by $\sim 25\%.$
- ▶ Protecting only first rounds can be dangerous.

Thank you for your attention.

Do you have any question?

SAFETY & SECURITY

14, rue Galilée 33600 PESSAC 05 57 26 08 88 contact-s3@serma.com

