

Improvement of Side-Channel Attacks on Mitaka

Template Attacks with a Power Model

<u>Vladimir Sarde</u>, Nicolas Debande

April 2, 2025

Outline

1 > Introduction

> The Context

> The Mitaka Scheme

2 > Previous Known Attacks

> Side Channel Attack

> Theoretical Attack on the Masking Scheme

3 > Our Attack and Improvements

> Our Practical Attack on the Masking Scheme

> Reducing the Number of Traces

> Countermeasures

4 > Conclusion

The Context The Mitaka Scheme

> The Context The Mitaka Scheme

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON

Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu

2021

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON

Thomas Espitau, Pierre-Alain Fouque, Francois Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu

2021

Slightly Improve Performances

Simpler Structure

The Context > The Mitaka Scheme

Mitaka Parameters

HASH

APPROX-CVP $_{\gamma}$ SAMPLING CENTERED

HASH

$\mathbf{APPROX}\text{-}\mathbf{CVP}_{\gamma}$

SAMPLING CENTERED

HASH APPROX-CVP $_{\gamma}$

SAMPLING

CENTERED

 $\begin{array}{l} {\rm HASH} \\ {\rm APPROX-CVP}_{\gamma} \\ {\rm SAMPLING} \end{array}$

CENTERED

Image credits: Thomas Prest

Mitaka

Falcon

Image credits: Thomas Prest 13

()) IDEMIA SECURE TRANSACTIONS

Falcon

Works well but $\mathcal{D}_{\mathbb{Z},r,c}$ represents a major leak in side-channel.

Improvement of Side-Channel Attacks on Mitaka > Introduction

Image credits: Thomas Prest 13

Previous Known Attacks

Side Channel Attack Theoretical Attack on the Masking Scheme

Previous Known Attacks

Side Channel Attack Theoretical Attack on the Masking Scheme

Half Gaussian Leakage

The attack targets the sampling in the direction of $\widetilde{b_0} = b_0 = \begin{pmatrix} f \\ g \end{pmatrix}$.

Half Gaussian Leakage

The attack targets the sampling in the direction of $\widetilde{b_0} = b_0 = \begin{pmatrix} f \\ g \end{pmatrix}$.

$$\begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 & F_0 & -F_{n-1} & \dots & -F_1 \\ f_1 & f_0 & \dots & -f_2 & F_1 & F_0 & \dots & F_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 & F_{n-1} & F_{n-2} & \dots & F_0 \\ \hline g_0 & -g_{n-1} & \dots & -g_1 & G_0 & -G_{n-1} & \dots & -G_1 \\ g_1 & g_0 & \dots & -g_2 & G_1 & G_0 & \dots & -G_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \dots & g_0 & G_{n-1} & G_{n-2} & \dots & G_0 \end{bmatrix}$$

IDEMIA SECURE TRANSACTIONS | Improvement of Side-Channel Attacks on Mitaka > Previous Known Attacks

 $\langle \rangle$

S = C - Z

Image credits: Thomas Prest

DEMIA SECURE TRANSACTIONS | Improvement of Side-Channel Attacks on Mitaka > Previous Known Attacks

 $\langle ()$

According to the sign the authors can split a set of signatures in two.

Falcon

Image credits: [ZLYW23]

S = C - Z

Image credits: Thomas Prest

 $\langle ()$

According to the sign, the authors can split a set of signatures in two.

Image credits: [ZLYW23]

Previous Known Attacks

Side Channel Attack > Theoretical Attack on the Masking Scheme

The Generation

Secure Mitaka uses an arithmetically masked gaussian generation.

Image credits: Quyen Nguyen

The Generation

However, Prest [Pre23] broke the security proof for masking order $t \ge 3$.

Image credits: Quyen Nguyen

Our Attack and Improvements

3

Our Practical Attack on the Masking Scheme Reducing the Number of Traces Countermeasures

Our Attack and Improvements

 Our Practical Attack on the Masking Scheme Reducing the Number of Traces Countermeasures

Improvement of Side-Channel Attacks on Mitaka 👌 Our Attack and Improvements

Building Phase

Leveraging this bias and other optimization, we construct a first order template.

Building Phase

Leveraging this bias and other optimization, we construct a first order template.

We can use this template for every shares.

Matching Phase

 $\langle \rangle$

We recover the sign of roughly half of the signature.

Our Attack and Improvements

Our Practical Attack on the Masking Scheme > Reducing the Number of Traces Countermeasures

Structure of \tilde{B}

The orthogonal basis used for the projections in Mitaka.

$$\widetilde{B} = \begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 & \widetilde{b}_{1,0} & -\widetilde{b}_{1,n-1} & \dots & -\widetilde{b}_{1,1} \\ f_1 & f_0 & \dots & -f_2 & \widetilde{b}_{1,1} & \widetilde{b}_{1,0} & \dots & -\widetilde{b}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 & \widetilde{b}_{1,n-1} & \widetilde{b}_{1,n-1} & \dots & \widetilde{b}_{1,0} \\ \hline g_0 & -g_{n-1} & \dots & -g_1 & \widetilde{b}_{1,n} & -\widetilde{b}_{1,2n-1} & \dots & -\widetilde{b}_{1,n+1} \\ g_1 & g_0 & \dots & -g_2 & \widetilde{b}_{1,n+1} & \widetilde{b}_{1,n} & \dots & -\widetilde{b}_{1,n+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \dots & g_0 & \widetilde{b}_{1,2n-1} & \widetilde{b}_{1,2n-2} & \dots & \widetilde{b}_{1,n} \end{bmatrix}$$

Structure of \tilde{B}

Unlike Falcon, in Mitaka 512 passages leak information.

$$\widetilde{B} = \begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 \\ f_1 & f_0 & \dots & -f_2 \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 \end{bmatrix} \begin{bmatrix} \widetilde{b}_{1,0} & -\widetilde{b}_{1,n-1} & \dots & -\widetilde{b}_{1,1} \\ \widetilde{b}_{1,1} & \widetilde{b}_{1,0} & \dots & -\widetilde{b}_{1,2} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 \end{bmatrix} \begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \widetilde{b}_{1,n-1} & \widetilde{b}_{1,n-1} & \dots & \widetilde{b}_{1,0} \\ \end{bmatrix}$$
$$\begin{bmatrix} g_0 & -g_{n-1} & \dots & -g_1 \\ g_1 & g_0 & \dots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \dots & g_0 \end{bmatrix} \begin{bmatrix} \widetilde{b}_{1,n-1} & \widetilde{b}_{1,2n-1} & \dots & -\widetilde{b}_{1,n+1} \\ \widetilde{b}_{1,n-1} & \widetilde{b}_{1,2n-2} & \dots & \widetilde{b}_{1,n} \end{bmatrix}$$

Structure of \tilde{B}

Unlike Falcon, in Mitaka 512 passages leak information.

$$\widetilde{B} = \begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 \\ f_1 & f_0 & \dots & -f_2 \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 \end{bmatrix} \begin{bmatrix} \widetilde{b}_{1,0} & -\widetilde{b}_{1,n-1} & \dots & -\widetilde{b}_{1,1} \\ \widetilde{b}_{1,0} & \widetilde{b}_{1,0} & \dots & -\widetilde{b}_{1,2} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 \end{bmatrix} \begin{bmatrix} \widetilde{b}_{1,n-1} & \widetilde{b}_{1,n-1} & \dots & \widetilde{b}_{1,0} \\ \hline g_0 & -g_{n-1} & \dots & -g_1 \\ g_1 & g_0 & \dots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \dots & g_0 \end{bmatrix} \begin{bmatrix} \widetilde{b}_{1,n-1} & \widetilde{b}_{1,2n-1} & \dots & -\widetilde{b}_{1,n+1} \\ \widetilde{b}_{1,n+1} & \widetilde{b}_{1,n} & \dots & -\widetilde{b}_{1,n+2} \\ \vdots & \vdots & \ddots & \vdots \\ \widetilde{b}_{1,2n-1} & \widetilde{b}_{1,2n-2} & \dots & \widetilde{b}_{1,n} \end{bmatrix}$$

 \Rightarrow Divided by 512 the number of traces.

Experimental Results

Previous Result [ZLYW23]

Our Results on Unmasked Mitaka

Experimental Results

Our Results on Masked Mitaka

IDEMIA SECURE TRANSACTIONS | Improvement of Side-Channel Attacks on Mitaka > Our Attack and Improvements

Our Attack and Improvements

Our Practical Attack on the Masking Scheme Reducing the Number of Traces > Countermeasures

Countermeasures

 $\langle \rangle$

Shuffle the calls to the sampler

$$\begin{bmatrix} f_0 & -f_{n-1} & \dots & -f_1 & \tilde{b}_{1,0} & -\tilde{b}_{1,n-1} & \dots & -\tilde{b}_{1,1} \\ f_1 & f_0 & \dots & -f_2 & \tilde{b}_{1,1} & \tilde{b}_{1,0} & \dots & -\tilde{b}_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_0 & \tilde{b}_{1,n-1} & \tilde{b}_{1,n-2} & \dots & \tilde{b}_{1,0} \\ \hline g_0 & -g_{n-1} & \dots & -g_1 & \tilde{b}_{1,n} & -\tilde{b}_{1,2n-1} & \dots & -\tilde{b}_{1,n+1} \\ g_1 & g_0 & \dots & -g_2 & \tilde{b}_{1,n+1} & \tilde{b}_{1,n} & \dots & -\tilde{b}_{1,n+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \dots & g_0 & \tilde{b}_{1,2n-1} & \tilde{b}_{1,2n-2} & \dots & \tilde{b}_{1,n} \end{bmatrix}$$

DEMIA SECURE TRANSACTIONS | Improvement of Side-Channel Attacks on Mitaka > Our Attack and Improvements

Countermeasures

 $\langle ()$

(1) Shuffle the calls to the sampler

	5			7				
Γ	f_0	$-f_{n-1}$		$-f_1$	$\widetilde{b}_{1,0}$	$-\widetilde{b}_{1,n-1}$		$-\widetilde{b}_{1,1}$
	f_1	f_0		$-f_2$	$\widetilde{b}_{1,1}$	$\widetilde{b}_{1,0}$		$-\widetilde{b}_{1,2}$
	:	:	÷ .	1		:	۰.	1
	f_{n-1}	f_{n-2}		f_0	$\widetilde{b}_{1,n-1}$	$\widetilde{b}_{1,n-2}$		$\widetilde{b}_{1,0}$
	g ₀	$-g_{n-1}$		$-g_1$	$\widetilde{b}_{1,n}$	$-\widetilde{b}_{1,2n-1}$		$-\widetilde{\widetilde{b}}_{1,n+1}$
	g_1	g_0		$-g_2$	$b_{1,n+1}$	$b_{1,n}$		$-b_{1,n+2}$
	:	:	֥ .	÷	÷	:	۰.	÷
L	g_{n-1}	gn-2		go	$\widetilde{b}_{1,2n-1}$	$\widetilde{b}_{1,2n-2}$		$\widetilde{b}_{1,n}$

(2) Constant time implementation for rejection

) We adapted the theoretical attack of Prest with $t \ge 3$ to a practical attack with $t \ge 1$.

) We adapted the theoretical attack of Prest with $t \ge 3$ to a practical attack with $t \ge 1$.

> We identified a new leakages on a unstudied sampler.

) We adapted the theoretical attack of Prest with $t \ge 3$ to a practical attack with $t \ge 1$.

> We identified a new leakages on a unstudied sampler.

) We divided by 512 the number of traces required.

) We adapted the theoretical attack of Prest with $t \ge 3$ to a practical attack with $t \ge 1$.

> We identified a new leakages on a unstudied sampler.

) We divided by 512 the number of traces required.

> We presented new specific countermeasures.