Chair of Security in Information Technology TUM School of Computation, Information and Technology Technical University of Munich

A Horizontal Attack on the Codes and Restricted Objects Signature Scheme (CROSS)

Jonas Schupp, Georg Sigl

Technical University of Munich TUM School of Computation, Information and Technology

April 2, 2025

Tur Uhrenturm

Outline

- Introduction and High-Level Overview on CROSS
- Recovering the Long-Term Secret from the Ephemeral Secret
- ❀ A Side-Channel Attack on the Syndrome Computation
- ${}^{igodold s}$ Applying the Attack to a Full Signing Operation
- ${\boldsymbol{\otimes}}$ Summary and Outlook

℗ Introduction and High-Level Overview on CROSS

Recovering the Long-Term Secret from the Ephemeral Secret

- Applying the Attack to a Full Signing Operation

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

CROSS: Codes & Restricted Objects Signature Scheme [1]

- Based on variants of the Syndrome Decoding Problem
 - Compact representations
 - Efficient arithmetic
- Fiat-Shamir Transform on Zero-Knowledge Protocol
 - Trade-off potential: signature size & performance

Simple and efficient Operations

- Rather low implementation complexity
- Possible to squeeze into microcontrollers

https://www.cross-crypto.com/

Attack Properties

Horizontal Attack [2–4] on Syndrome Computation

- Horizontal CPA [5] on Matrix-Vector Multiplication
- Restricted hypothesis space due to underlying problem

Targets single round of the underlying ID-Protocol

- One attack per round of the ID-Protocol
- Multiple useable attack targets per signature

Full recovery of a representation of the secret key (η)

- ✓ Only one signature generation necessary for all parameter sets and security levels except:
- RSDP(G)-1 Fast requires two signing operations

Generic 5-pass Scheme

CROSS – Identification Scheme

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

пп

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

5

Introduction and High-Level Overview on CROSS

${old S}$ Recovering the Long-Term Secret from the Ephemeral Secret

- Applying the Attack to a Full Signing Operation

Summary and Outlook

Recovering a representation of the secret key

Procedural Description

Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(e',u') \stackrel{\text{Seed}}{\longleftarrow} G \times \mathbb{F}_p^n$ Compute $d \in G$ such that $d \star e' = e$ Set $u = d \star u'$ and $\tilde{s} = uH^{\top}$

Recovering a representation of the secret key

Procedural Description

Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(e',u') \stackrel{\text{Seed}}{\longleftarrow} G \times \mathbb{F}_p^n$ Compute $d \in G$ such that $d \star e' = e$ Set $u = d \star u'$ and $\tilde{s} = uH^{\top}$

$\begin{array}{l} \textbf{Pseudocode} \\ \boldsymbol{\eta}'_i, \boldsymbol{u}'_i \leftarrow \texttt{CSPRNG} \left(\texttt{Seed}[i]||\texttt{Salt}||i+c, \right) \\ \boldsymbol{\sigma}_i \leftarrow \boldsymbol{\eta} - \boldsymbol{\eta}'_i \\ \texttt{for } j \leftarrow 0 \texttt{ to } n-1 \texttt{ do} \\ \boldsymbol{v}[j] \leftarrow \boldsymbol{g}^{\boldsymbol{\sigma}_i[j]} \\ \texttt{end} \\ \boldsymbol{u} \leftarrow \boldsymbol{v} \star \boldsymbol{u}'_i; // \ \star \texttt{ is component-wise} \\ \texttt{product} \\ \tilde{\mathbf{s}} \leftarrow \boldsymbol{u} \mathbf{H}^\top \end{array}$

Recovering a representation of the secret key

Procedural Description

Sample Seed $\stackrel{\$}{\leftarrow} \{0;1\}^{\lambda}$, $(e',u') \stackrel{\text{Seed}}{\longleftarrow} G \times \mathbb{F}_p^n$ Compute $d \in G$ such that $d \star e' = e$ Set $u = d \star u'$ and $\tilde{s} = uH^{\top}$

$\begin{array}{l} \textbf{Pseudocode} \\ \boldsymbol{\eta}'_i, \boldsymbol{u}'_i \leftarrow \texttt{CSPRNG} \left(\texttt{Seed}[i]||\texttt{Salt}||i+c, \right) \\ \boldsymbol{\sigma}_i \leftarrow \boldsymbol{\eta} - \boldsymbol{\eta}'_i \\ \texttt{for } j \leftarrow 0 \texttt{ to } n-1 \texttt{ do} \\ \boldsymbol{v}[j] \leftarrow \boldsymbol{g}^{\boldsymbol{\sigma}_i[j]} \\ \texttt{end} \\ \boldsymbol{u} \leftarrow \boldsymbol{v} \star \boldsymbol{u}'_i; \textit{//} \star \texttt{ is component-wise} \\ \texttt{product} \\ \tilde{\mathbf{s}} \leftarrow \boldsymbol{u} \mathbf{H}^\top \end{array}$

Recovery

$$\begin{aligned} v_i &= (u_i \cdot u_i'^{-1}) \mod p \\ \sigma_i &\Leftarrow v_i \\ \eta_i &= (\eta_i' \cdot \sigma_i) \mod z \end{aligned}$$

Outline

Introduction and High-Level Overview on CROSS

Recovering the Long-Term Secret from the Ephemeral Secret

Applying the Attack to a Full Signing Operation

Summary and Outlook

Implementation of the Syndrome Computation

$$\tilde{\mathbf{s}} = \mathbf{u} \mathbf{H}^{\top}$$

$$\tilde{\mathbf{s}} = \mathbf{u} \begin{bmatrix} \mathbf{V}_{tr} \mathbf{I}_{n-k} \end{bmatrix}^{\top}$$

$$(s_1, \dots, s_{n-k}) = (u_1, \dots, u_n) \begin{pmatrix} v_{tr,1,1} & \dots & v_{tr,1,n-k} \\ v_{tr,2,1} & \dots & v_{tr,2,n-k} \\ \dots & \dots & \dots \\ v_{tr,k,1} & \dots & v_{tr,k,n-k} \\ 1 & \dots & 0 \\ 0 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & 1 \end{pmatrix}$$

$$(s_1, \dots, s_{n-k}) = (u_{k+1}, \dots, u_n) + (u_1, \dots, u_k) \begin{pmatrix} v_{tr,1,1} & \dots & v_{tr,1,n-k} \\ v_{tr,2,1} & \dots & v_{tr,2,n-k} \\ \dots & \dots & \dots \\ v_{tr,k,1} & \dots & v_{tr,2,n-k} \\ \dots & \dots & \dots \\ v_{tr,k,1} & \dots & v_{tr,k,n-k} \end{bmatrix}$$

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

A CPA Style Attack on the Syndrome Computation (2) Attack on the upper n - k entries of u n-k $v_{1,1}$ $v_{1,2}$... $v_{1,n-k}$

Restricting the hypothesis space

RSDP

RSDP(G)

$$p = 127$$
 $p = 509$
 $z = 7$ $z = 127$

$$egin{aligned} \mathbf{u} \in \mathbb{F}_p^n \ \mathbf{V}_{tr} \in \mathbb{F}_p^{(n-k) imes k} \ oldsymbol{v} \in \mathbb{F}_p^n \ oldsymbol{\sigma} \in \mathbb{F}_z^n \end{aligned}$$

but we know \mathbf{u}' from the signature, $\mathbf{v} = g^{\sigma}$ and $\mathbf{u} = \mathbf{v} \star \mathbf{u}'$. \Rightarrow only *z* hypotheses for each entry in *u*.

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

CPA results for single coefficients

CPA results for single coefficients

Outline

- Introduction and High-Level Overview on CROSS
- Recovering the Long-Term Secret from the Ephemeral Secret
- ${}^{\textcircled{\otimes}}$ Applying the Attack to a Full Signing Operation

Summary and Outlook

Applying the attack to a full signing operation (1)

Algorithm and Security Category	Optim. Corner	<i>p</i>	z	n	k	m	t	w	Pri. Key Size (B)	Pub. Key Size (B)	Signature Size (B)
CROSS-R-SDP 1	fast	127	7	127	76	-	163	85	32	77	19152
	balanced	127	7	127	76	-	252	212	32	77	12912
	small	127	7	127	76	-	960	938	32	77	10080
CROSS-R-SDP 3	fast	127	7	187	111	-	245	127	48	115	42682
	balanced	127	7	187	111	-	398	340	48	115	28222
	small	127	7	187	111	-	945	907	48	115	23642
CROSS-R-SDP 5	fast	127	7	251	150	-	327	169	64	153	76298
	balanced	127	7	251	150	-	507	427	64	153	51056
	small	127	7	251	150	-	968	912	64	153	43592
CROSS-R-SDP(G) 1	fast	509	127	55	36	25	153	79	32	54	12472
	balanced	509	127	55	36	25	243	206	32	54	9236
	small	509	127	55	36	25	871	850	32	54	7956
CROSS-R-SDP(G) 3	fast	509	127	79	48	40	230	123	48	83	27404
	balanced	509	127	79	48	40	255	176	48	83	23380
	small	509	127	79	48	40	949	914	48	83	18188
CROSS-R-SDP(G) 5	fast	509	127	106	69	48	306	157	64	106	48938
	balanced	509	127	106	69	48	356	257	64	106	40134
	small	509	127	106	69	48	996	945	64	106	32742

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025

Applying the attack to a full signing operation (2)

Applying the attack to a full signing operation (3)

пп

Overall results

Algorithm and Security Category	Distinct CPA results/round	Frac. of correct CPA results	# rounds for lower k rec.
CROSS-R-SDP 1	23	74%	27
CROSS-R-SDP 3	31	81%	59
CROSS-R-SDP 5	42	83%	76
CROSS-R-SDP(G) 1	27	13%	158
CROSS-R-SDP(G) 3	32	29%	123
$CROSS\text{-}R\text{-}SDP(G)\ 5$	31	43%	157

Overall results (2)

Algorithm and	Distinct CPA	Frac. of correct	# rounds for
CROSS-R-SDP 1	50	99%	3
CROSS-R-SDP 3	74	99.8%	3
CROSS-R-SDP 5	99	99.9%	3
CROSS-R-SDP(G) 1	9.8	79%	3
CROSS-R-SDP(G) 3	18	80%	3
CROSS-R-SDP(G) 5	$\overline{25}$	82%	3

Outline

- Introduction and High-Level Overview on CROSS
- Recovering the Long-Term Secret from the Ephemeral Secret
- Applying the Attack to a Full Signing Operation

${old S}$ Summary and Outlook

Summary and Outlook

- Unsupervised CPA-Style Attack on CROSS
 - Attack exploits leakage from syndrome computation
 - ✓ Full key recovery from a single signing operation for all except one parameter sets

Summary and Outlook

- Unsupervised CPA-Style Attack on CROSS
 - Attack exploits leakage from syndrome computation
 - ✓ Full key recovery from a single signing operation for all except one parameter sets

Outlook

- X Countermeasures?
- X Stronger (e.g. template based) attacks?

Summary and Outlook

- Unsupervised CPA-Style Attack on CROSS
 - Attack exploits leakage from syndrome computation
 - ✓ Full key recovery from a single signing operation for all except one parameter sets

Outlook

- X Countermeasures?
- X Stronger (e.g. template based) attacks?

Thank you for your attention!

References

- [1] M. Baldi et al. CROSS Documentation. [Online]. Available from: https://web.archive.org/web/20250122122245/http://www.cross-crypto.com/CROSS_Specification_v1.2.pdf, (Archived on 22 Jan. 2025). 2024.
- [2] C. Clavier et al. "Horizontal Correlation Analysis on Exponentiation". In: Information and Communications Security. Ed. by M. Soriano, S. Qing, and J. López. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 46–61.
- [3] A. Bauer et al. "Horizontal collision correlation attack on elliptic curves: Extended Version –". In: Cryptography and Communications 7.1 (Oct. 2014), pp. 91–119.
- [4] C. D. Walter. "Sliding Windows Succumbs to Big Mac Attack". In: Cryptographic Hardware and Embedded Systems CHES 2001. Ed. by Ç. K. Koç, D. Naccache, and C. Paar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 286–299.
- [5] E. Brier, C. Clavier, and F. Olivier. "Correlation Power Analysis with a Leakage Model". In: Cryptographic Hardware and Embedded Systems - CHES 2004. Ed. by M. Joye and J.-J. Quisquater. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 16–29.

Backup: CROSS Sign Pesudocode

Algorithm 1: SIGN(pri. Msg), taken from [4] **Data:** λ : security parameter. $g \in \mathbb{F}_{n}^{*}$: generator of a subgroup E of \mathbb{F}_{n}^{*} with cardinality z Eⁿ: restricted subgroup \mathbf{M}_{G} : $m \times n$ matrix of \mathbb{Z}_{τ} elements, employed to generate vectors $n \in G \subset \mathbb{R}^n$ t: number of iterations of the ZKID protocol \mathcal{B}_{w}^{t} : set of all binary strings with length w and Hamming weight tc: a fixed constant, equal to the number of nodes in the seed tree dsc: a fixed constant, greater than t employed to obtain domain separation Input: pri: private key constituted of Seed_{ak} $\in \{0, 1\}^{2\lambda}$ Mag: message to be signed Mag $\in \{0, 1\}^*$ Output: Signature Signature 1 Begin // Key material expansion 2 $n, \ell, H, M_{\mathcal{O}} \leftarrow \text{ExpandPrivateSeed}(Seed_{*})$ $n, \mathbf{H} \leftarrow \text{ExpandPrivateSeed}(Seed_{\alpha})$ // Computation of commitments Mseed $\stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$, Salt $\stackrel{\$}{\leftarrow} \{0,1\}^{2\lambda}$ 3 4 $(Seed[0], \dots, Seed[t-1]) \leftarrow SEEDTREELEAVES(Mseed, Salt)$ for $i \leftarrow 0$ to t - 1 do 5 $\zeta', u'_i \leftarrow \text{CSPRNG} (\text{Seed}[i]||\text{Salt}||i + c,)$ $\delta_i \leftarrow c - c'$ $\eta'_i \leftarrow \zeta' \mathbf{M}_G$ $n', u' \leftarrow \text{CSPRNG} (\text{Seed}[i]||\text{Salt}||i + c_i)$ 7 $\sigma_i \leftarrow n - n'_i$ for $i \leftarrow 0$ to n - 1 do 8 $v[j] \leftarrow q^{\sigma_i[j]}$ 0 10 end 11 $u \leftarrow v \star u'_i / / \star$ is component-wise product 12 $\bar{e} \leftarrow vH$ $\mathsf{cmt}_0[i] \leftarrow \mathsf{HASH}(\tilde{\mathbf{s}}||\boldsymbol{\delta}_i||\mathsf{Salt}||i + c + \mathsf{dsc})$ $\operatorname{cmt}_{a}[i] \leftarrow \operatorname{HASH}(\tilde{\mathbf{s}}||\boldsymbol{\sigma}_{i}||\operatorname{Salt}||i + c + \operatorname{dsc})$ $cmt_1[i] \leftarrow HASH(Seed[i])|Salt||i + c + dsc)$ 14 end 15 $d_0 \leftarrow MERKLEROOT(cmt_0[0], \dots, cmt_0[t-1])$ 16 $d_1 \leftarrow HASH(cmt_1[0] || \dots || cmt_1[t-1])$ 17 18 $d_{01} \leftarrow HASH(d_0 \parallel d_1)$

18	
	// First challenge vector extraction
19	$d_m \leftarrow HASH(Msg)$
20	$d_\beta \leftarrow HASH(d_m d_{01} Salt)$
21	beta $\leftarrow \text{CSPRNG}(d_{\beta}, (\mathbb{F}_{p}^{*})^{*})$
	// Computation of first round of responses
22	for $i \leftarrow 0$ to $t - 1$ do
23	for $j \leftarrow 0$ to $n - 1$ do
24	$\mathbf{e}_i'[j] \leftarrow g^{\boldsymbol{\eta}_i'(j)}$
25	end
26	$\mathbf{y}_i \leftarrow \mathbf{u}_i' + beta[i]\mathbf{e}_i'$
27	end
	// Second challenge vector extraction
28	$d_b \leftarrow HASH(\mathbf{y}_0 \mathbf{y}_{t-1} d_\beta)$
29	$\mathbf{b} \leftarrow \text{CSPRNG} \left(d_b, \mathcal{B}_{(w)}^t \right)$
	// Computation of second round of responses
30	MerkleProofs \leftarrow MERKLEPROOF((cmt_0[0],, cmt_0[t - 1]), b)
31	SeedPath \leftarrow SEEDTREEPATHS(Mseed, b)
	// Signature composition
10	$\operatorname{ren} \leftarrow (\mathbb{R}^n \vee \mathbb{R}^m)^{1-w} + \operatorname{ren} \leftarrow (\mathbb{R}^n \vee \mathbb{R}^n)^{1-w}$
	$(ap_0 \leftarrow (x_p \land x_s))$ $(ap_0 \leftarrow (x_p \land x_s))$
33	$rsp_1 \leftarrow (\{0,1\}^{n,n})^{n-m}$ // empty array
34	$j \leftarrow 0$ for $i \neq 0$ to $i \neq 1$ do
30	$\lim_{t \to 0} t_0(t) - 1 = 0$
50	$(\mathbf{D}_{[i]} = 0)$ then $(\mathbf{C}_{[i]} = 0)$ then
	sent
	$\max \left[i \right] \leftarrow \left\{ i_{1}, \delta_{1} \right\} + \max \left[i \right] \leftarrow \left\{ i_{1}, \infty \right\}$
s7	$(\mathbf{sp}_0[j] \leftarrow (\mathbf{y}_i, \mathbf{o}_i) + (\mathbf{sp}_0[j] \leftarrow (\mathbf{y}_i, \mathbf{o}_i))$
38	$rsp_1[j] \leftarrow cmt_1[i]$
59	$j \leftarrow j + 1$
10	end
11	ena
12	$\texttt{Signature} \gets \texttt{Salt} \mid\mid d_{01} \mid\mid d_b \mid\mid MerkleProofs \mid\mid SeedPath \mid\mid rsp_0 \mid\mid rsp_1$
	// all Signature components are encoded as binary strings
13	return Signature
14 en	d

Jonas Schupp, Georg Sigl | A Horizontal Attack on CROSS | April 2, 2025