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Abstract. As the technical feasibility of a quantum computer becomes
more and more likely, post-quantum cryptography algorithms are re-
ceiving particular attention in recent years. Among them, code-based
cryptosystems were first considered unsuited for hardware and embed-
ded software implementations because of their very large key sizes. How-
ever, recent work has shown that such implementations are practical,
which also makes them susceptible to physical attacks. In this article,
we propose a horizontal correlation attack on the Classic McEliece cryp-
tosystem, more precisely on the matrix-vector multiplication over Fg
that computes the shared key in the encapsulation process. The attack
is applicable in the broader context of Niederreiter-like code-based cryp-
tosystems and is independent of the code structure, i.e. it does not need
to exploit any particular structure in the parity check matrix. Instead, we
take advantage of the constant time property of the matrix-vector multi-
plication over F2. We extend the feasibility of the basic attack by lever-
aging information-set decoding methods and carry it out successfully on
the reference embedded software implementation. Interestingly, we high-
light that implementation choices, like the word size or the compilation
options, play a crucial role in the attack success, and even contradict the
theoretical analysis.

1 Introduction

There is almost no day without a Quantum Computing breaking news. During
the last five years the evolution of quantum technologies went from creating
and improving qubits, investigating both quantitative as well as qualitative as-
pects [36J44126], to practical simulated models of connecting qubits into quantum
networks [4325], all in a common goal of achieving a scalable quantum computer.



From private companies to public organizations/governments announcing new
quantum computing and security acts, all converge to this major technology chal-
lenge.The US Public Law No. 117-260 from 2022, also known as the Quantum
Computing Cybersecurity Preparedness Act encourages the migration of informa-
tion technology systems to quantum-resistant cryptography. Also, the European
Union Agency for Cybersecurity urges all private data sensitive technologies to
adopt quantum resistant cryptographic solutions [7].

The post-quantum cryptography standardization process initiated by NIST
in 2016 aims at standardizing cryptography algorithms whose security is not
threatened by the existence of a quantum computer of sufficient capacity. Two
categories of algorithms are considered, namely digital signatures and key en-
capsulation mechanisms (KEMs). One KEM proposal under consideration in the
fourth round of the standardization process is the Classic McEliece cryptosys-
tem which is based on error-correcting codes [I] and its security relies on the
hardness of the binary syndrome decoding problem.

While the first rounds of the standardization process focused on perform-
ing cryptanalysis of the algorithms, NIST explicitly stated that time has now
come for more hardware implementations, and in particular side-channel resis-
tant implementations. In this regard, it is of prime importance to evaluate the
susceptibility of the implementations of these algorithms to physical attacks in
general and to side-channel attacks in particular. It is also one of the main tracks
followed by the NIST PQC seminarﬂ where the side-channel analysis topic is
recurrent [39137].

Even before being considered a strong candidate in the post-quantum cryp-
tography race, code-based cryptosystems were subject to side-channel attacks
[1222I3T2/13]. The first round of the NIST post-quantum standardization pro-
cess ended with the last documentation updates on June 12th, 2019. It was that
moment that triggered even more specific side-channel attacks, i.e. oriented to-
wards the Classic McEliece KEM. In a series of articles, either the security of
session key or of the private key was successfully broken [24[TT20/19].

In this work, we focus on the core operation of the encapsulation process in
the Classic McEliece cryptosystem, namely the matrix-vector multiplication over
F5 between the public-key, i.e. the parity-check matrix of the error-correcting
code, and a random vector of fixed, low Hamming weight. This operation has
been targeted before by physical attacks, for instance by laser fault injection [11]
or a profiled side-channel attack [I7]. In both of these works, the value of the
integer syndrome is exploited to recover the secret error vector. This breaks the
security of the KEM and allows to recover the shared key, since the secret error
vector is used as seed to derive the shared secret key.

Conversely here, we recover the secret error vector by performing an unpro-
filed horizontal correlation attack on the matrix-vector multiplication over Fs.
This attack directly relies on the constant-time property of the implementation
of the matrix-vector multiplication. We show that a correlation exists between
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the columns of the parity-check matrix and the Hamming distance leakage dur-
ing the execution. This allows to identify which columns of the parity-check
matrix are involved in the syndrome computation and reveals the positions of
the errors in the secret error vector.

Contributions

This article makes the following contributions:

— We propose the first unprofiled attack on the Classic McFEliece cryptosystem.
This attack uses a single side-channel trace and allows to recover the shared
secret key of the KEM. Since it targets the matrix-vector multiplication step,
it is applicable to any Niederreiter-like cryptosystem,

— We evaluate the attack success with respect to important implementation
choices, namely the size of the words used for the implementation of the
matrix-vector multiplication over F5 and the optimization options passed to
the compiler. In particular, we highlight a discrepancy between the success
rate of the attack in a simulated setting and the observations made on real
side-channel traces.

Organization

This article is organized as follows. Section [2 presents the Classic McEliece cryp-
tosystem before reviewing existing side-channel attacks that apply against it.
Section [ describes the proposed horizontal correlation side-channel attack. Sec-
tion |4 provides experimental results, both with simulated and real side-channel
traces, for various parameters. In Section [p| we discuss the influence of the im-
plementation choices on the attack success rate, before concluding in Section [6}

2 Related work

2.1 Notations

The following notations are used in this article. Sets are written as calligraphic
uppercase letters, for example S. Matrices are written in uppercase bold letters,
for example M. Vectors are written in lowercase bold letters, for example v.
The identity matrix of size n is written as I,,. The j* column of a matrix M
is written as M|, ;. The entry on the 4™ column of the i*" row of a matrix M
is written as My; ;). The i*? entry of a vector v is written as v;. The Hamming
weight of a binary vector v, i.e. the number of non-zero coordinates, is written
as HW(v). The Hamming distance between two vectors u and v is written as
HD(u,v). The bitwise logical AND between two vectors u and v is written as
u A v and the logical exclusive-OR is written as u @ v.



2.2 The Classic McEliece cryptosystem

The Classic McEliece cryptosystem is a candidate to the NIST post-quantum
cryptography standardization process [I]. After going through the first three
rounds, it has been selected as a fourth round candidate on July 5th, 2022. As
a KEM, its role is to allow for secure transfer of a shared secret key. It is split
into three functions: key generation, encapsulation and decapsulation. During
key generation, a public key H,,, = (L,—x|T) and its associate private key
Gopriv are generated. The encapsulation mechanism take as input the public key
and outputs the shared secret key k that will be used in the next exchange
and an encapsulated value s sent to the second party. The second party runs
the decapsulation using its private key Gpriv and the encapsulated message s to
derive the shared secret key k. We focus on the encapsulation step here.

Classic McEliece encapsulation We target the encapsulation function of the
Classic McEliece cryptosystem, described in Algorithm [I]and more precisely the
ENCODE subroutine, shown on line[3]in Algorithm[I]and detailed in Algorithm [2|
The specific operation we target with the proposed attack is the matrix-vector
multiplication over Fo between the parity-check matrix and the random error
vector. This operation is essentially the encryption step of the Niederreiter cryp-
tosystem [32]. In this setting, a message is first encoded into a constant-weight
vector before being multiplied by the parity-check matrix of a binary Goppa
code. The security of this construct relies on the N P-hardness of the binary
syndrome decoding problem [0]: knowing H,,, and s, recovering e is hard.

Algorithm 1 Classic McFEliece encapsulation [I]

1: function Encaps(T)

2: Draw a random vector e € F3 with HW(e) = ¢.

Compute ¢ <+ENCODE(e, T)

Compute k < H(1 || e || ¢) > session key (shared secret)
return (c, k)

Algorithm 2 Classic McEliece encoding subroutine [I]

1: function ENCODE(e, T)

2: Define Hpup < (In—k|T)
3: Compute s < Hpup.€

4: return s

Embedded software implementations For years, embedded software imple-
mentations of the Niederreiter cryptosystem were deemed impractical because



of the high memory requirements for the public key storage. The first imple-
mentation on an 8-bit microcontroller was done by Heyse in 2010 [2I], but with
relatively low-security parameters: n = 2048, k = 1751 and ¢ = 27. These values
must be compared with the ones of the Classic McEliece submission provided in
Table |1} that lead to even larger keys. Implementation challenges of code-based
cryptosystems on embedded platforms are discussed in [9].

The selection of Classic McEliece as a candidate for the last rounds of the
NIST post-quantum cryptography standardization process sparked a renewed
interest for embedded software implementations. In [38], the public key is not
stored but retrieved from the private key, following a streaming approach which
had been described before in [42]. However, with the memory capacity of embed-
ded devices increasing continuously, it was only a matter of time before the public
key could be fully stored in the Flash memory. This happened in 2021, when
Chen and Chou proposed an implementation of the Classic McEliece cryptosys-
tem on an ARM Cortex-M4 target, along with many other optimizations [14].

2.3 Side-channel attacks

Side-channel attacks exploit the information leakage that occurs when an algo-
rithm is being executed on a physical device. Profiled attacks require access to
an open device for a preliminary training step, during which the attacker can
freely set the secret values and perform side-channel measurements. A classifier
is trained with this data and used to attack a closed device and recover the secret
values. Conversely, an unprofiled attack does not require a training step, and is
therefore more readily applicable. Well-known examples of unprofiled attacks
are the differential power analysis (DPA) [23] and the correlation power analysis

(CPA) [10].

Horizontal attacks A horizontal attack, as published by Walter [45] originally,
consists in observing several intermediate values inside a single side-channel trace
to extract secret information from it. This is in contrast with vertical attacks,
of which the DPA and the CPA are examples, where a single intermediate value
is repeatedly observed over several side-channel traces.

In [45], a DPA-style attack on the modular exponentiation algorithm used
in the RSA cryptosystem is carried out, allowing the attacker to recover the
secret exponent. This attack was later improved by Clavier et al. [16]. By using
correlation, authors were able to distinguish a squaring from a multiplication
by identifying if intermediate values were involved in a computation or not. We
follow a similar approach in this article, essentially identifying which columns of
the parity-check matrix are involved in the computation.

Side-channel attacks on the Niederreiter / Classic McEliece cryp-
tosystems We focus here on side-channel attacks that aim at recovering the
secret message in the Niederreiter cryptosystem or equivalently the secret ran-
dom vector in the Classic McFEliece cryptosystem. It is straightforward to see



Table 1: Classic McFEliece parameters

Parameters set 348864 460896 6688128 8192128
n 3488 4608 6688 8192
m 12 13 13 13

t 64 96 128 128
k=n—mt 2720 3360 5024 6528
n—k=mt 768 1248 1664 1664

that if one is capable of recovering the secret random vector e, then the encapsu-
lation step is effectively deterministic and broken. As a consequence, the attacker
has access to the shared secret key, since all other operations are deterministic
and the Hp,,;, matrix is public.

In [24], authors attack the constant-time Berlekamp-Massey decoding algo-
rithm used in the decapsulation step. This is done on the reference hardware
implementation of Classic McEliece. They adapt the attack from [40] and iden-
tify error positions by repeatedly adding columns of the parity-check matrix to
the syndrome, determining which ones correspond to a decoding failure. While
the iterative chunking strategy they propose reduces the number of queries, the
number of side-channel traces needed ranges from 334 to 654 for the Classic
McFEliece parameters. In contrast, the attack we propose succeeds with a single
side-channel trace.

The approach followed in [I7] is entirely different and targets the encapsu-
lation step instead, in particular the matrix-vector multiplication over Fy used
for the syndrome computation. It consists in deriving an integer syndrome from
side-channel measurements, instead of the binary syndrome. Although this inte-
ger syndrome might be slightly incorrect in some positions, because of noise in
the side-channel measurements and errors in the integer syndrome derivation, it
is usually enough to recover the error positions using a distinguisher based on
the dot product. This attack has the advantage of requiring a single side-channel
measurement in the attack phase. However, being in the profiled attack setting,
an open device is still required for the profiling phase. An improvement of the
attack resistance to noise in the profiled setting was recently published by Grosso
et al. [T9] thanks to a t-test based attack method.

In [13], a horizontal attack is mounted not on the Niederreiter cryptosystem
but on the McEliece cryptosystem, specifically on its variant that uses quasi-
cyclic moderate-density parity-check (QC-MDPC) codes. This horizontal attack
does not attack the syndrome computation but the key rotation, which is inher-
ent to the quasi-cyclic property. Since the attack targets a hardware implemen-
tation, the registers which are overwritten during the key rotation step have a
very distinctive leakage, which can be exploited to recover the key. Conversely,
the attack we propose is more general since it does not exploit the structure of
the matrix.



Guo et al. proposed a profiled key-recovery attack on the Classic McFEliece
cryptosystem [20]. Targetting the decapsulation step, it recovers the private key
using between 300 and 800 side-channel traces. Since it targets the private key,
i.e. the long-term secret, it is definitely a more serious threat than message-
recovery attacks, which recover the shared secret key, i.e. the short-term secret.
However, their attack requires specifically crafted ciphertexts, which correspond
to single-bit error vectors. Arguably, these very specific error patterns could be
easily detected during the decapsulation step and a countermeasure based on an
early abort could prevent the attack.

It is worth noting that other post-quantum cryptosystems, based on lattices
for instance, have been the target of horizontal side-channel attacks as well, as
already highlighted in previous works [4/3].

In this work, we target the syndrome computation in the encapsulation step,
but propose an unprofiled attack instead. Therefore, before outlining the attack
procedure, we describe how the syndrome computation is usually implemented.

2.4 Software implementations of the syndrome computation

The target operation of the proposed attack is the syndrome computation, which
is a matrix-vector multiplication over o, as given in Equation . This operation
is the second step of the encoding routine in the encapsulation process (see line
in Algorithm , which is called after a uniform random constant-weight vector
e has been drawn.

S = Hpub.e (1)

Schoolbook implementation The matrix-vector multiplication over Fs is im-
plemented in software by iterating over the matrix rows and columns and per-
forming a logical AND operation between the matrix and the vector entries,
while accumulating the result on the syndrome entry by a logical XOR oper-
ation. We refer to this matrix-vector multiplication method as the schoolbook
method. This is described in Algorithm [3] where an (n — k) x n matrix M is
multiplied by an n-bit vector v to obtain an (n — k)-bit syndrome s.

Algorithm 3 Schoolbook matrix-vector multiplication over Fs.

1: function MAT_VEC_MULT_-SCHOOLBOOK(M, v)
2: for r <~ 0to(n—k—1) do

3: sr <0 > Initialisation
4: for c< 0to (n—1) do

5: Sr < 8p ® (Mg Ave) > Multiply and add
6 return s

However, for memory efficiency reasons, the schoolbook version of the matrix-
vector multiplication algorithm described in Algorithm [3]is rarely used in actual



implementations. This assumes that the vector and matrix entries, which are
binary, are stored as they are, each occupying a full word. To avoid occupying a
full word to store only one bit, matrix row and vector entries are usually packed
into words.

Packed implementation In the packed implementation, a vector b of size w
is used to accumulate, by a logical XOR, operation, the result of the logical AND
operation between the matrix entry and the vector entry, which are both words.
In this manner, the XOR and AND operations are bitsliced, and a total of w
bits are processed in parallel. We refer to w as the word width. Then, this word
is repeatedly shifted and XORed over itself, to perform a logical XOR operation
between all its bits. Then, the least-significant bit, on which the result has been
accumulated, is extracted. Eventually, this bit is packed into a syndrome word
by shifting it by an amount between 0 and w — 1 and performing a logical OR
operation with the previously stored word.

We refer to this matrix-vector multiplication over Fo method as the packed
method, where bits are packed into w-bit wide words. This is described in Algo-
rithm {4} where an (n — k) x £ matrix M is multiplied by a vector v of size I to
obtain an syndrome s of size ”Tfk This method is used in the reference imple-
mentation of the Classic McFEliece cryptosystem submitted to the NIST PQC
standardization process [I] with w = 8. Conversely, in the additional vectorized
reference implementation, the value which is used is w = 64. The optimized im-
plementation by Chen and Chou [I4] uses w = 32 this time. Given the variety of
the word widths used in these packed implementations, it is important to eval-
uate how it affects the attack success. This will be experimentally highlighted
and discussed in the next sections.

Algorithm 4 Packed matrix-vector multiplication over Fs.

1: function MAT_VEC_MULT_PACKED(M, v, w)

2: for r + 0 to (=% — 1) do

3: s, <0 > Initialization
4 for r <~ 0to(n—k—1) do

: b+ 0

6: for c<-0to (% —1) do

7 b+ b® My g Ave) > Multiply and add
8: R

9: while 7 > 0 do

10: b+ bd (b > 1) > Exclusive-OR folding
11: i i

12: b+~bAl > LSB extraction
13: Sr/w < Sp/w V (b << (r mod w)) > Bit packing

14: return s




As a side note, the schoolbook method shown in Algorithm [3] may be seen
as a special case of the packed method of Algorithm [4 with w = 1.

3 Horizontal correlation attack on the matrix-vector
multiplication

The section describes the proposed horizontal correlation attack on the Classic
MecEliece cryptosystem.

3.1 Attacker model

We place ourselves in the framework of physical attacks, where an attacker has
a physical access to the device. Therefore, the attacker can measure physical
quantities such as power consumption or electromagnetic radiations while the
device is running. In addition, we assume that the device under attack raises
a reliable trigger signal before the encapsulation. This last constraint could be
relaxed, considering the regular patterns followed by the power consumption of
the device while the matrix-vector multiplication over Fs is being performed, as
shown in the next subsection.

We also assume that the attacker knows the public key Hy,1, and the syn-
drome s, which are public, and aims at recovering the secret error vector e of
Hamming weight ¢. Scenarios where the public key is generated on demand from
the private key are out of scope, since the proposed attack targets the encapsu-
lation step. Therefore, we assume that the public key is known to the attacker,
and that she does not need to rely on specific techniques to obtain it. The value
of t is a parameter of the cryptosystem and is assumed to be publicly known too.
Even though the value of s is not necessary in the basic version of the attack, it
is needed to carry out information-set decoding, as detailed in Subsection [3.4]

Being in the unprofiled attack setting, the attacker model we rely on is rather
weak. In particular, we do not assume that the attacker owns a copy of the device
on which he can perform a preliminary profiling step.

3.2 Side-channel trace acquisition and reshaping

After implementing Algorithm [4] in C, we performed power consumption side-
channel measurements on the device running it. Experimental parameters are
detailed in Section[d] An example side-channel trace of the power consumption of
the microcontroller, while the matrix-vector multiplication over Fy is performed,
is shown in Figure

Since NIST explicitly requires the implementations submitted to the PQC
standardization process to be constant-time, the side-channel trace is very reg-
ular and patterns can easily be spotted in it. This is visible in Figure [1, where
a side-channel trace of the multiplication between a 32x64 matrix and a 64-bit
vector is shown. One can easily see that a pattern is repeated 32 times, cor-
responding to the multiplication of the 32 matrix rows with the error vector.
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Fig. 1: Side-channel trace of the matrix-vector multiplication over Fy for n = 64
showing the n — k = 32 blocks.

Precise identification of this pattern’s length is done by observing peaks in the
auto-correlation of the side-channel trace.

Therefore, after performing the acquisition of the raw side-channel trace Tray
of length ngamples as depicted in Figure (1} it is reshaped into a matrix Treshaped-
The process is a simpler version of the one presented in [I7]. Each row of this ma-
trix contains the side-channel leakage associated with the multiplication of one
matrix row with the error vector. Therefore, there are (n — k) rows in Treshaped-
The number of columns in Treshaped 1S approximately %, given that a few
samples at the beginning and the end of Ty, do not correspond to the matrix-
vector multiplication.

~ Msamples

- n—k
—>
Nsamples
S
7;aw | _) | ﬂeshaped
N

Fig. 2: Reshaping step applied on the raw trace (adapted from [I7])

3.3 Horizontal Correlation Attack

The next step consists in performing a horizontal correlation attack between
the columns of the parity-check matrix and sub-traces corresponding to the
multiplication of one matrix row with the error vector. These sub-traces are easily
identified due to the constant-time property of the matrix-vector multiplication
over o, as it will be shown in the Section El This defines a correlation matrix
C of n rows and as many columns as the number of samples in the sub-traces.
An entry of the correlation matrix C stores the value of the Pearson correlation



coefficient, estimated using Equation , between a column of the parity-check
matrix and a column of the reshaped side-channel trace.

N

S -3 (5-9) L
i=1 . —

p(x,y) = with X = N ;:1 X; (2)

S e i

i=1 i=1

Formally, the value of each entry of the correlation matrix C is given in
Equation , where p stands for the Pearson correlation coefficient.

C[i,j} = p(Hpub[:J] ) 7;esha»ped[:,j]) (3)

From there, the positions of the errors in the secret error vector are derived.
This is done by keeping only the maximum value for every row of C and sorting
them according to the maximum absolute value of the correlation coefficient.
This process effectively sorts the columns of the parity-check matrix according to
the probability that they are involved in the syndrome computation. Therefore,
it reveals the secret error vector e

The intuition behind this attack path is that every bit of the error vector,
no matter the width w, will have a contribution to the side-channel leakage if
it meets a 1 in the associated matrix column. The asymmetry of the logical
AND operation is crucial here: the side-channel leakage associated with matrix
columns which are aligned with a zero in the error vector will be essentially
random. Conversely, side-channel leakage associated with matrix columns which
are aligned with a one in the error vector will follow the changes of values in the
matrix columns.

An illustration of the proposed attack on a toy example is shown in Figure
with parameters n =8, k =4, ¢t =3 and w = 2.

The correlation between the columns of the reshaped side-channel trace and
the matrix columns is computed to build the correlation matrix C in step @
The maximum of the absolute values is computed for every column is computed
in step @ and the permutation P that sorts the resulting vector is obtained in
step @ Finally, the permutation P is inverted and P! is applied to a vector
made of ¢ ones and n — ¢ zeroes to recover the secret error vector e in step @

The “n/a” entries in the C matrix denotes correlation values which cannot
be computed because of the constant Hamming distance side-channel leakage
for the last b computation, implying a zero variance. In reality, the side-channel
leakage is always noisy and prevents such cases from happening.

3.4 Information-set decoding

Although the previous section suggested that the attack works by identifying the
t matrix columns for which the absolute value of the correlation coefficient is the
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Fig. 3: Overview of the proposed horizontal attack on a toy example with pa-
rameters n =8, k=4,t =3 and w = 2.

greatest, it is in fact sufficient to have those columns belong to the first n—k ones,
which are called the information set, instead of the first ¢ columns strictly, like it



was the case for the toy example in Figure 3| First proposed by Prange [35], the
information-set decoding strategy leverages linear algebra to decode more effi-
ciently. The use of this strategy was already proposed in the context of physical
attacks, to significantly improve the attack success rate [2420017].

Further improvements to the information-set decoding method may be used
as well, to improve the success rate of this strategy [27M4III828] [5I29]. With
these improvements, up to § ones might be missing from the information set, as
opposed to the Prange setting for which § = 0. These methods have an expo-
nential time complexity with respect to the n parameter of the cryptosystem.
Therefore, their running time quickly becomes prohibitive. However, they may
still be used in a realistic setting up to § = 3. This is the value we keep for the
experiments in the next section.

4 Experimental results

4.1 Simulated trace

In order to precisely control the signal-to-noise ratio (SNR) and observe its influ-
ence on the success rate of the proposed attack, we first experiment with a simu-
lated trace. This trace is generated by considering both a Hamming weight and
a Hamming distance leakage model. We did not investigate more advanced side-
channel leakage simulators, like ELMO [30], since they are too device-specific.
We do this at every step of Algorithm [4] where the b intermediate value is up-
dated. Therefore, the Hamming weight leakage model is simulated by storing
HW(b), and the Hamming distance leakage model by storing the Hamming dis-
tance between b and its previous value, denoted as HD(b, b™). The inputs M and
v of the algorithm are chosen at random with HW(v) = ¢. Both the Hamming
weight and the Hamming distance leakage are normalized, to contribute equally
to the overall information leakage.

The number of ones found in the first n — k positions of the error vector after
sorting according to the absolute value of the correlation coefficient is shown in
Figure 4] Additionally, we plot the [t — §;¢] band in green for § = 3 as justified
above. If the number of ones in the first n — k positions of the vector is higher
than ¢t — 6, then the correct error vector can be recovered using the information-
set decoding strategy outlined above. The thick black line at the bottom of the
plots shows the number of ones found in the first n — k positions when choosing
the error vector randomly.

The experiment is run 25 times for each set (n, k,t, SNR) of parameters, and
the number of ones is averaged. As expected, the higher the SNR, the easier
it is to identify which columns of the parity check matrix contributed to the
syndrome computation.

Two other observations can be made. First, the wider the word, the lower
the success rate. This is because the contribution of a single bit to the overall
correlation coefficient is less visible for large words. Therefore, the success rate of
the attack is the highest for w = 8 and the lowest for w = 64. Second, the larger
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Fig. 4: Average number of ones in the first n — k positions of the error vector for
several SNR values for the Classic McEliece parameters.

the cryptographic parameters, the higher the success rate. This is explained by
the fact that the error vector is used n — k times in the syndrome computation.
Therefore, the number of samples used in the computation of the correlation
coefficient is higher for large cryptographic parameters. Therefore, the success
rate of the attack is the highest for n = 8192 and the lowest for n = 3488.

4.2 Real trace

All the experiments are performed with the ChipWhisperer platform [33]. The
target microcontroller embeds an ARM Cortex-M4 core, which is the embedded
software target recommended by NIST for the PQC standardization processﬂ
The ARM Cortex-M4 core has thirteen 32-bit registers. Therefore, one could
argue that its “native” word width is w = 32.

Unfortunately, the particular microcontroller we used embeds only 256 kB
of Flash memory. Therefore, the public key associated with even the smallest

® https://groups.google.com/a/list.nist.gov/g/pgc-forum/c/cJxMq0_90gU
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Classic McEliece parameters does not fit in, since around 331 kB would be needed
to store i (2Xgxt — 3488x12x64 _ 331 (08).

Consequently, we must scale the cryptosystem parameters accordingly. To
accommodate this constraint while keeping the parameters choice unbiased, we
selected two parameters sets from the Decoding challenge webpageﬂ (n,k,t) =
(640, 512,13) and (1600, 1280, 30).

For each parameter set, we perform the experiments for three different word
widths w: 8, 32 and 64. We extracted the relevant syndrome function from the
NIST reference implementation. Since it uses w = 8 natively, we simply made
two variations for w = 32 and w = 64.

Additionally, we also explore the different optimization levels available when
compiling the source code for the target microcontroller: -00, -01, -02, -03
and -0s. The first one, -00, corresponds to no optimization at all. This setting
is commonly used when aiming at constant-time implementations, to prevent the
compiler from optimizing the loops and ruining the developer’s efforts. Settings
ranging from -01 to -03 correspond to various optimization efforts, -03 being
the highest, providing the best performance. Finally, -Os aims at minimizing the
code storage footprint in memory.

The number of clock cycles required for the multiplication of one matrix
row with the error vector for the two sets of parameters are given in Table 2} As
expected, both the word width and the optimization level have a strong influence
on these numbers.

Word Optimization level Word Optimization level
width -00 -01 -02 -03 -O0s width -00 -01 -02 -03 -O0s

w=28 3120 829 741 222 741 w=38 7080 1830 1821 476 1821
w=32 889 229 222 226 200 w=32 1939 528 522 528 470
w=064 743 206 194 153 194 w =64 1463 456 443 443 419

(a) n =640, k = 512, t = 13 (b) n = 1600, k = 1280, t = 30

Table 2: Number of clock cycles for the multiplication of a matrix row by the
error vector

The experimental results obtained for the two parameters sets are shown in
Figure[5} Each experiment was repeated 200 times to provide sufficient statistical
significance for the box plots.

Several observations can be made regarding these experimental results. First
of all, for a given word width w, the optimization level used for the compilation
has a strong impact on the success rate of the attack, except for w = 64 for
which this impact is lower. For example, for w = 32, the only successful attack
is the one performed on the program which was compiled with the -00 option.

S https://decodingchallenge.org/goppa
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Fig.5: Number of ones in the first n — k positions of the error vector for several
word widths and compilation options for the Decoding challenge parameters.

However, this is not always the case and, contrarily to the intuition, the highest
success rate is not always obtained for -00. For example for w = 8, this is for
the -03 optimization level that the success rate is the highest. Overall, there is
no clear relation between the optimization level and the attack success rate, but
it does have an impact on it.

The second observation, which again is counterintuitive and contradicts the
simulation results presented in the previous subsection, is that the wider the
word, the higher the success rate. For w = 64, no matter the optimization level,
there are always more than ¢t — 3 ones in the first n — k positions of the error
vector, therefore allowing for a full recovery using the information-set decoding
strategy. This observation is hard to explain without a better understanding of
the internal architecture of the processor. Some possible causes are examined in
the next section.



5 Discussion on the attack success

As highlighted in the previous section, while the attack is indeed successful in
several settings, its success rate seems to depend heavily on implementation
choices: the word width and the optimization level. Moreover, the attack as it
is described relies on a specific leakage model: the Hamming distance leakage
model. The objective of this section is to take a closer look at the effect of these
settings and the conditions that make the attack successful.

5.1 A closer look at the assembly

The attack success rate depends on the word width used for the implementation
of the matrix-vector multiplication over Fy as well as the optimization level.
Changing these parameters has an effect on machine code generated by the
compiler. The influence of these parameters is examined below. We want to
emphasize that, at the moment, we are not able to provide quantitative results
about the exact role of every instruction in the observed side-channel leakage,
especially with respect to the leakage model. Therefore, we restrict our analysis to
a qualitative approach, highlighting the differences between the generated codes.
Future works could focus on developing a complete assembly implementation of
the target operation, in order to fully understand where the side-channel leakage
might come from and to eliminate it.

As a preliminary step, it is important to note that the target microcontroller
has 32-bit registers. Therefore, its “native” word width is 32 bits and we can
expect implementations that use this width to be compiled in a more straight-
forward manner.

For ease of reading, the generated assembly codes are grouped together in

Appendix [A]

w =8 When the word width is w = 8, then the processor must handle data
which is smaller than its native register size. This is illustrated in Listings [1] to
Bl where the generated codes are shown for different optimization levels. These
are grouped if identical for different optimization levels.

As expected, with the lowest optimization effort =00, the code is rather simple
(see Listing. One should note that 1oad and store instructions explicitly work
with bytes, hence the b suffix (1drb and strb). For higher optimization levels,
the increment of the row and columns indices are embedded in the instruction,
shortening the code but still matching precisely with the algorithm. Finally,
for the highest optimization level -03, the compiler determines that memory
accesses can be grouped and loads words of 32 bits directly, hence the 1dr.w
variant shown in Figure [3]

The differences between the generated codes depending on the optimization
level might explain why the attack success varies so much between them for
w = 8, as shown on the left-hand side of Figure



w = 32 When the word width is w = 32, then the processor handles data which
is of its native register size. Therefore, the generated code is more consistent
across optimization levels, as shown in Listings [4] to [6] This might explain why
the success rate of the attack for w = 32 seems more consistent, as shown in the
center of Figure However, there is no apparent reason why the attack only
succeeds for the -00 optimization level and not for the others.

We chose to not include the generated code for the -03 optimization level.
Indeed, it is different depending on the chosen n value. For n = 640, the inner
for loop, found at line [f] in Algorithm [4] is fully unrolled. This is not the case
for the larger value n = 1600, for which the generated code is very similar to the
one obtained with optimization levels -02 and -0s, shown in Listing [6}

w = 64 When the word width is w = 64, then the processor must handle data
which is larger than its native register size. As such, when loading data, either
a load double 1drd instruction or two distinct load 1dr.w instructions are used.
We denote those as step 1/2 in Listings[7]to [I0}] Some other instructions might
be inserted between the two steps to better fill up the pipeline. Again, we do not
include the code generated for the -03 optimization level because of inconsistent
loop unrolling depending on the value of n. Besides this difference, the code
is the same as for w = 32. Therefore, similarly to the conclusion we drew for
w = 32, it is hard to find a reason why the attack is almost always successful for
w = 64.

5.2 Leakage assessment

To try to better understand the differences of success rate depending on the
word width and optimization levels, we conducted a leakage assessment on the
side-channel traces. We used a rather common ANOVA (ANalysis Of VAriance)
F-test, also referred to as NICV [8], which is a ratio between the inter-class and
intra-class variances, where classes are intermediate values of the syndrome com-
putation after application of a leakage model. We consider both the Hamming
weight and Hamming distance leakage models in this analysis.

We perform the F-test on side-channel traces obtained with n = 1600 and
k = 1280. Since we consider intermediate values of b, this leaves us with a
population of size of (=k)Xn For the largest value of w = 64 this is a population
of 8000, which is statistically relevant considering the number of classes at hand.
Instead of plotting the values of the F statistic for all samples, we keep only the
maximum for a given set of parameters. In addition, we normalize it since what
we are interested in is a comparison between values for a given leakage model.

Results are shown in Figure [} For the Hamming weight leakage model, in
Figure[6a] the highest F statistic values are systematically obtained for the lowest
level of optimization -00. Intuitively, this can be explained because the code is
less condensed than for higher levels of optimization, allowing to better observe
the Hamming weight values through the power consumption. The F statistic
values are much lower for higher optimization levels. Nevertheless, even though
the F statistic is very high for w = 8 and the -00 optimization level, the attack



does not succeed in this case, as shown in Figure [l Therefore, it confirms the
intuition that the attack is not possible with the Hamming weight leakage model.

For the Hamming distance leakage model, in Figure [6b] which is the one
being exploited by the proposed attack, the variations observed for the different
parameters almost follow the success rates from Figure 5} This is a confirmation
that the leakage model being exploited experimentally is really the Hamming
distance leakage model.
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Fig. 6: Maximum value of the F statistic for several word widths and compilation
options and two leakage models.

5.3 Dependency on the Hamming distance leakage model

The attack path is better explained using a Hamming distance leakage model,
directly illustrating the transitions from 0 to 1 or from 1 to 0 when updating
the b value, as shown in line [7] of Algorithm [4 A Hamming weight leakage
model would not allow to follow the proposed attack path, since, for a Hamming
distance of 1, the Hamming weight might either increase or decrease, which
makes it useless when computing the correlation.

Nevertheless, when implementing and compiling the line [7] of Algorithm [4]
it is unavoidable that several machine code instructions are generated. In par-
ticular, the logical AND between the matrix entry and the error vector entry
is computed first, before being accumulated on b by a logical XOR later. As a
consequence, a Hamming weight leakage model on this intermediate value, stor-
ing the logical AND between the matrix entry and the error vector entry, could



be leveraged for the attack as well. This is formalized in Equation after the
definition of the Hamming distance.

HD(b,b") = HD(b™ & Hyuy, ) Aej,b7) = HW(Hpusy, A €) (4)

Another related issue with the Hamming weight or Hamming distance leakage
models is the so-called “double-cancellation” phenomenon [I7/19]. It happens
when two bits of the intermediate value b are flipped in opposite directions.
While this is visible on the Hamming distance, this is hidden when considering
only the Hamming weights. However, it requires two ones to be in the same
word of width w in e, which is quite rare and not an issue for the proposed
correlation-based attack.

5.4 Hardware implementations

While the experimental results provided show the attack success on a microcon-
troller, there is a strong possibility that the same attack path could be exploited
for hardware implementations too. Indeed, the method of splitting the public-
key matrix Hy,, and the error vector e in words of width w was also chosen in
the FPGA implementation of Classic McEliece [15]. Consequently, the Hamming
distance between intermediate values stored in the flip-flops of the digital design
could be retrieved by side-channel analysis, and the same attack would apply.
The Hamming distance model is usually very applicable when performing power
or electromagnetic analysis of FPGA and ASIC implementations [34/4]. As a
side note, a mixture of a Hamming weight and Hamming distance leakage was
already exploited in a similar attack on the QC-MDPC McEliece cryptosystem
in [13].

6 Conclusion

This article introduces the first unprofiled attack on the post-quantum cryptosys-
tem Classic McEliece. Exploiting the constant-time property of the matrix-vector
multiplication over 5 used in the encapsulation, the proposed horizontal corre-
lation attack recovers the secret error vector e, and therefore the KEM shared
secret key, from a single side-channel trace.

We highlighted how implementation choices, namely the word width used for
the bitsliced operations and the optimization level passed to the compiler, have
a strong impact on the attack success rate. Using a leakage assessment method-
ology and disassembling the generated code, we tried to explain the success rate
variations.

As next steps, it is worth investigating the feasibility of the attack on a differ-
ent architecture, like RISC-V, or on a hardware target, like an FPGA. Another
interesting aspect could be to better exploit the Hamming weight leakage, since
it is very strong for the -00 optimization level. Combining both the Hamming
weight and the Hamming distance leakages could also lead to more powerful
attacks.
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A Assembly codes for different optimization levels and
word widths

All the assembly codes shown below were obtained with the arm-none-eabi-gcc
compiler, version 9.2.1 20191025. Annotations are by the authors and follow the
notations used in the article.

Listing 1 w = 8, optimization level -00
1ldrb r2, [r3, #0] // Load byte e;

ldrb r3, [r3, #0] // Load byte Hpub[i il

ands r3, r2 // Hpub[i,j] A ej

uxtb r2, r3 // Unsigned extend byte
ldrb r3, [r7, #31] // Load byte b

eors r3, r2 // b=b® Hpub[i’j] Ne;

strb r3, [r7, #31] // Store byte b

Listing 2 w = 8, optimization levels -01, -02 and -0s
ldrb.w r3, [r2, #1]! // Load byte Hpub[
ldrb.w 1lr, [ip, #1]! // Load byte e;
and.w r3, r3, 1lr // Hpub[iyj]/\ej
eors rl, r3 // b=bo Hpub[i?j] Ne;

i,5]

Listing 3 w = 8, optimization level -03
ldr.w r4, [r2], #4 // Load 4 bytes Hpub[iyﬂ, Hpub[i7j+1], Hpub[LHQ] and Hpub[iyﬁgl
ldr.w r3, [r0], #4 // Load 4 bytes e;, €11, €12 and €;43

and.w r3, r3, r4 // HP“b[i,j] Nej, HPUb[i,j+1] Ne€jt1, HPUb[i,j+2] N ejt2
// and HPUb[i,jJrS] Nejis
eor.w rl, r1, r3 // bj=b;® HPUb[z‘,j] ANej, bjr1 =bji1 P HPUb[i,j+1] N e€jt1
/! bjt2 =bjr2 ® Hpub; ;10 Ne€jr2 and bjis =bjrs @ Hpuby; ;13 A€jys




Listing 4 w = 32, optimization level -00

ldr r2, [r3, #0] // Load e;

ldr r3, [r3, #0] // Load HP“b[i,j]

ands r3, r2 // Hpub[i,j] A ej

ldr r2, [r7, #36] // Load b

eors r3, r2 // b=b® L TR
str r3, [r7, #36] // Store b

Listing 5 w = 32, optimization level -01

ldr.w r3,
ldr.w r5,
ands r3,
eors ri,

[r2, #4]' // Load Hpub[iyj];

[x7, #4]1! // Load ej;

r5 // Hpub[iﬂ A ej

r3 // b:b@Hpub[iJ]/\ej

Listing 6

w = 32, optimization levels -02 and -0s

ldr.w r4,
ldr.w r3,

and.w r3,
eor.w rl,

[r2] 5 #4 // Load Hpub[i,j];
[r0], #4 // Load e;;

r3, rd // Hpub[m] A ej
rl, r3 // b=b®Hpuw ;Ae;

Listing 7

w = 64, optimization level -00

ldrd 10, r1, [r3] // Load Hpub[i)j] in 2 registers
1drd r2, r3, [r3] // Load e; in 2 registers
and.w r5, r0, r2 // Hpub[i,j] Ne; (step 1)

and.w r6, rl, r3 // Hpub[i’j] ANe; (step 2)

ldrd r2, r3, [r7, #112] // Load b in 2 registers

eor.w rl, r2, rb5 // b:b@Hpub[i’j] ANe; (step 1)
str r1, [r7, #56] // Store b (step 1)

eors r3, r6 // b= b@Hpub[Lﬂ ANe; (step 2)
str r3, [r7, #60] // Store b (step 2)

Listing 8 w = 64, optimization level -01

ldr.w rl1, [r3, #8]'! // Load Hpub[m] (step 1)

ldr 12, [r3, #4] // Load e; (step 1)

ldr.w r7, [r4, #8]! // Load HPUb[i,j] (step 2)

ands rl, r7 // Hpub[i7j]/\ej (step 1)

ldr 7, [rd, #4] // Load e; (step 2)

ands r2, r7 // Hpub[i’j]/\ej (step 2)

eor.w ip, ril, ip // bzb@Hpub[i,j] ANe; (step 1)
eors r0, r2 // b :bEBHpub[i’j] Ne; (step 2)




Listing 9 w = 64, optimization level -02

ldr.w r1,
ldr.w r6,
1ldr r2,
ands ril,
1ldr r6,

and.w r2,
eor.w rb,
eor.w r0,

[r3, #8]!
[r4, #8]!
[r3, #4]
ré

[r4, #4]

r2, r6
r5, ril
r0, r2

//
//
//
//
//

//
//
//

Load Hpub[i’j] (step 1)
Load e; (step 1)
Load Hpup; j (step 2)
Hpun(; ;) Nej (step 1)
Load e; (step 2)

Hpub[@j] Ne; (step 2)
b=b®Hpu ;Ne; (step 1)
b=b® Hpub[i,j] Ae; (step 2)

Listing 10 w = 64, optimization level -0s

ldr.w fp,
ldrd sl,
1ldr r7,
and.w sl,
ands rl,

eor.w rO0,
eor.w r3,

[r4, #8]!
rl, [r8]
[r4, #4]
sl, fp
r7

sl, r0
r3, ril

//
//
//
//
//

//
//

Load Hpub[ihj] (step 1)
Load e; in 2 registers
Load HPUb[i,j] (step 2)
Hpub[imj] Ne; (step 1)
Hpub[m.] ANe; (step 2)
b=b® Hpub[i’j] ANe; (step 1)
b=bo Hpub[iyj] ANe; (step 2)
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