
A hardware design methodology to prevent
microarchitectural transition leakages

Mathieu Escouteloup1[0009−0001−8254−9130] and Vincent
Migliore2[0009−0006−2194−7991]

1 Université de Bordeaux, Bordeaux INP, Laboratoire IMS, UMR CNRS 5218,
France first.last@ims-bordeaux.fr

2 LAAS–CNRS, Univ. Toulouse, CNRS, INSA, Toulouse, France
first.last@laas.fr

Abstract. Side-channel attacks allow information extraction from a sys-
tem by analyzing indirect observations. For instance, power consumption
is known to be correlated with sensitive data manipulated by digital
components. Recent efforts have been put on securing the system at the
software level with a formally proven method called masking. They rely
on an abstract model of the target where automatic countermeasures
can be efficiently applied. Recent work focused on microarchitecture, i.e.
implementation details of the hardware, to deal with residual vulnerabil-
ities which require strong knowledge of the system’s hardware and have
limited portability.

In this paper, we present a generic methodology to harden the processor’s
microarchitecture to allow straightforward software defense strategy im-
plementation (like masking) with minimal knowledge of the hardware.
Based on a fine-grained vulnerability diagnosis at the microarchitecture
level and a generic design hardening strategy, our proposition can be
applied to produce several processors with security, performance and
area tradeoffs. In addition, we provide two secured designs based on a
customizable RISC-V processor and its memories, validated with real
measurements on an FPGA.

Keywords: Power side-channels · Design method · Processor design · Microar-
chitecture · RISC-V

1 Introduction

Cyberphysical and connected objects have gained momentum recently due to
their increasing adoption to address societal challenges (smart cities, connected
cars, smart factories...). To support flexibility and updatability requirements,
modern connected objects are generally processor-based. They have also gained
in complexity, with the integration of more and more components into a sin-
gle chip, such as System-on-Chip (SoC), making security assessment a serious
challenge. Compared to usual computer systems, they also face a large range

2 M. Escouteloup and V. Migliore

of physical attacks, which exploit some characteristics of the target system in-
cluding both software and hardware. Among these, Side-Channel Attack (SCAs)
can infer secret information from physical observations measured during the ex-
ecution of sensitive computations. For instance, the AES encryption algorithm,
considered as strongly secured, is highly vulnerable to SCAs.

For power observation, one of the well-known mitigation techniques is called
masking [19]. The idea is to break down secret data into multiple values called
shares that are individually statistically independent from the secret. For in-
stance, to mask a secret s with boolean masking, a uniform value r is generated
and XOR-ed with s, producing shares (s⊕ r, r).

While theoretically unbreakable, masking suffers from weaknesses when im-
plemented on a given target, especially when the system’s model does not per-
fectly match the real hardware. For instance, in processor-based architecture,
shares can be processed successively or simultaneously, leading to potential tran-
sitions between them, which can be directly exploited to reduce the global secu-
rity level [5].

In practice, it has been proven that many registers or wires can generate
transition between shares [5,23,12] meaning that processor’s microarchitecture
is a non-negligible source of leakage. Unfortunately, since they are deeply hidden
in the microarchitecture, hardening software or hardware against power-based
side-channel attacks is challenging. Several defense mechanisms have been pro-
posed to increase the security level of masked implementations. Some of them
try to patch the software directly by inserting basic instructions to clean inter-
nal hardware states, manually [26] or automatically [29,28]. The Instruction Set
Architecture (ISA) can also be directly modified [16] to integrate some instruc-
tions for hardware cleaning. However, in addition to impacting performance,
they also need a precise understanding of the microarchitecture issue to know
which transitions must be mitigated. This information is not always accessible in
the gray-box system or in available models [17]. Finally, another approach is to
directly harden the processor. Data obfuscation and hardware masking [4,13,33]
are then used to build a new security layer at the hardware level. Hardening
is also possible physically directly using Electronic Design Automation (EDA)
tools [31]. However, all these strategies finally try to hide the transition leakages.

Contributions Based on all these observations, we propose to address the tran-
sition leakage issue from its root cause: the microarchitecture. Instead of trying
to modify existing software and hardware by target-specific countermeasures, we
propose a generic design approach to mitigate transition leakages from microar-
chitecture’s description. Using the properties of a high-level hardware description
language (here Chisel), we develop a set of fundamental blocks where we apply
most of our generic design strategies. They are then used to build a complete
microarchitecture with security properties, limiting processor-specific changes.
Finally, the whole strategy is analyzed using RTL simulations and then vali-
dated by performing real measurements on a Field-Programmable Gate Array
(FPGA) target.

A hardware design methodology 3

More generally, this works aims at addressing microarchitectural issues at
that abstraction layer. It is part of a global security strategy where each layer of
the system must be considered. In that way, other hardening strategies (mask-
ing for the software abstraction layer, or glitches for the physical layer) can be
combined to achieve a given security level.

This approach offers new hardware designer directives to secure its design,
allowing the removal of potential weaknesses before the fabrication. This method-
ology can be summarized in four steps, iterated to compare multiple hardened
designs:

1. generate the associated Register Transfer Level (RTL) description from the
target microarchitecture specification,

2. build a leakage model considering all data registers and signals are potential
leakage sources,

3. evaluate in both the simulation and real target the security using a set of
microbenchmarks to reproduce all the data transitions,

4. enrich the microarchitecture description using generic hardening strategies
to remove the leaky transitions.

The rest of this paper is organized as follows. Section 2 provides a descrip-
tion of the threat model, the leakage model and a description of known hardware
vulnerabilities. Section 3 presents our generic methodology in the design phase.
Section 4, Section 5 and Section 6 provide a complete analysis and instantia-
tion of the methodology to a processor-based microarchitecture, with a focus
on microarchitecture description and RTL generation in Section 4, the required
microbenchmarks for the security assessment in Section 5, and how to apply the
generic countermeasures in Section 6. In Section 7, a validation of the hardened
processor is proposed using both simulation and real measurements on an FPGA
target.

2 Background

2.1 Threat Model

In this paper, we consider the side-channel scenario where the execution and ma-
nipulation of sensitive data impact its physical environment. Particularly, we are
interested here in power consumption variations. Then, in our scenario, we con-
sider that an attacker has physical access to its target (e.g. an Internet-of-Things
(IoT) device with a processor). He also has the different necessary equipment
to perform power consumption measurements. An attack is considered success-
ful if a malicious person is able to observe variations which directly depend on
sensitive data in the target. In the other way, an efficient defense strategy must
ensure that an attacker will not be able to recover any information from sensitive
data by analyzing power consumption traces. We will see in Subsection 2.3 that
it concerns the great majority of the potential leakages.

4 M. Escouteloup and V. Migliore

2.2 Transition Leakages

A transition is a value change in a wire or register from a data d1 to d2. Basically,
at the circuit level, a bit flip (0 →1 or 1 → 0) in the system leads to a temporary
consumption increase. Then, when a transition between two sensitive values
occurs, it impacts the consumption proportionally to the Hamming Distance
between d1 and d2. In the case of masking [20,26,15,22,19], consider a secret
value s, a mask m and the masked value v, then: v = m⊕s. Basically, only m and
v are directly manipulated. This is what is done by some secure cryptographic
implementations [10]. However, if a transition m → v occurs, the Hamming
Weight will probably leak while it is directly correlated to s. By performing
multiple measurements, it leads to a potential reduction of the global security
level [11,26].

2.3 Hardware Sources

Transitions can occur in the hardware as soon as different data are successively
manipulated. From a software point of view, the more visible case is one of the
architectural registers or General Purpose Registers (GPRs). An executed ap-
plication is directly able to know if it currently overwrites a destination register.

However, the issue is more important when it directly concerns the microar-
chitecture. Most of the potential transition leakage sources are completely ab-
stract by the ISA: omit microarchitectural mechanisms can lead to security re-
duction [5]. By its structure, a processor pipeline unfortunately contributes to
potential transitions: the same mechanisms process the different instructions cy-
cle after cycle. Based on sets of microbenchmarks, different studies [23,12,27]
expose the numerous potential leakage sources in current implementations. On
both Arm [23,12] or RISC-V ISA [27] processors, multiple hardware mecha-
nisms are then highlighted like pipeline registers, internal buffers or memory
ports. By evaluating different boards, including SoCs and FPGAs with differ-
ent ISAs, Marshall et al. have also highlighted that transition leakages really
concern most of the systems [23]. Clearly, it appears that the microarchitecture
has an important impact on leakage [3]. The issue is even deeper if we consider
more complex microarchitectures like superscalar processors [7,19]. Indeed, the
number of potential leaky mechanisms increases with the complexity, and the
number of possible transitions is also higher due to simultaneous executions.

To deal with this complexity, an important part of the literature focused
on building simulators to estimate power consumption efficiently for a given
target [34,24,21,8,36] and then provide meaningful information for software de-
velopers about potential leakage. However, this type of simulator needs to be
updated for each new microarchitecture to ensure that no source of leakage has
been overlooked. An interesting approach is to automatically detect them at
design time [30,4,18,6]. In this way, we ensure that results are automatically
updated with any hardware changes.

A hardware design methodology 5

2.4 Protection Strategies

Based on the detection of leakage sources, several strategies have been proposed
to protect the system.

Pure software solutions try to catch the problem by only modifying the ap-
plication itself. It leads to constraints for the software developer or compiler [19],
which means they need information about the microarchitecture (e.g. pipeline
stages). This is particularly useful to apply patches to existing hardware. How-
ever, it does not tackle the issue at its source and breaks the hardware abstrac-
tion from the ISA: the same program cannot be safely executed on different
targets without changes. Because pure software solutions are difficult to effi-
ciently implement, another approach is to directly modify the instruction set to
add specific instructions. FENL [16] is a proposition of fencing to overwrite the
different hardware registers and prevent transitions between the previous/next
instructions. But this kind of approach involves modifying or recompiling the
software and ensuring that the new instructions are efficiently introduced.

Another approach is a pure hardware solution where the microarchitecture is
directly modified, allowing the code execution with transparent solutions. This
principle is used in PARAM [4] to obfuscate direct value manipulation. However,
they do not consider transition leakages. It can also be used to transparently add
another layer of masking to increase the protection order [13]. But fundamen-
tally, this approach does not remove the existence of transitions at their source.
COCO [18] tackles this problem by splitting the hardening process between
hardware and software. Deeply hidden transitions, such as unintended reads or
switches in multiplexer trees, are effectively removed by modifying the hardware.
But for a complete secured implementation, an important part is still delegated
to the software, particularly to remove leakages due to successive instructions or
architectural overwriting. This approach is interesting for simple processors like
the IBEX core, whose data path is not pipelined. However, it is not enough when
hidden microarchitectural buffers can keep sensitive data for multiple cycles.

For the rest of this paper, we propose a generic design methodology to tackle
transition leakages by directly removing them from the microarchitecture. Our
goal is to ensure that, independently of the software choices, the execution will
not lead to a reduction in the security order due to the microarchitecture, even
with pipelined or buffered mechanisms. Another kind of leakage targeting the
hardware is glitches. However, they are due to physical phenomena considered at
a lower abstraction level than the microarchitecture. In this paper, we only focus
on the microarchitectural issue of transition leakages, trying to first eliminate this
issue before integrating complementary protections during other design steps.

3 Methodology

To design a secure processor, one main challenge is to select a suitable abstraction
level to make the hardening process efficient in terms of complexity and hardware
overhead. While the ISA level does not allow a precise representation of the

6 M. Escouteloup and V. Migliore

system, consider directly all the logic gates leads to numerous specific changes.
Hopefully, hardware description languages (HDLs) allow to efficiently describe a
system from its microarchitecture specifications. Moreover, recent improvements
now allow to efficiently produce RTL models while directly integrating generic
strategies, such as hardening techniques.

In this work, we propose different hardening strategies at the microarchitec-
ture level (described in Section 6). They allow different performance/security
trade-offs, varying in the considered leakage sources (whole logic or registers
only) and the execution throughput. In order to compare several processor con-
figurations (number of pipeline stages, hardening strategies applied, etc.), we
propose an iterative design methodology based on 4 steps. (a) From the target
microarchitecture specifications, a RTL model of the target is produced. (b) Us-
ing a precise leakage model relying on the enumeration of all register and wire
transitions, (c) leaky transitions are generated using a collection of software mi-
crobenchmarks suited for vulnerability assessment at the microarchitecture level.
Then, with the help of a generic hardening approach, (d) the microarchitecture
specifications are enriched to mitigate the diagnosed vulnerability depending on
the performance overhead criteria.

Target Specifications
(micro-architecture)

Vulnerability As-
sessment & Per-

formance Analysis

Target Model
(RTL)

Leakage Model
(transitions)

Precise & Generic
Hardware Hardening Threat Model

(power analysis)(a) (b)

(c)

(d)

Fig. 1: Proposed methodology for generic and iterative microarchitecture hard-
ening against power-based side-channel attacks.

In our case, to generalize the application of hardening strategies, we described in Section
4 how we increase this methodology by previously designing a set of fundamental blocks
used to describe the microarchitectures. However, note that our methodology is still
relevant for existing processors: the different hardening strategies must then be applied
directly to each internal mechanism.

A hardware design methodology 7

4 Targeted Design and Model Extraction

4.1 Generic Design Library

The goal of our methodology is to detail the needed steps to design a transition
leakage-free processor. For that, some important changes in the whole microar-
chitecture will be needed to prevent these transitions. Instead of modifying each
register or mechanism one by one, we decided to first design a generic design
library. The idea is to define the fundamental modules before instantiating them
to create the final design: register, buses with separated control and data parts,
FIFO, etc. Then, to apply the design strategies described in the following Section
6, we only need to modify once the generic modules.

To push this strategy to the limit, we decided to use the Chisel language [2].
Based on the Scala language, it allows to efficiently generate Verilog/SystemVer-
ilog descriptions and stay at the RTL level while benefiting from modern lan-
guage features. Particularly, we use object-oriented programming and inheri-
tance to design highly generic modules. For example, it is the same custom
register module which will be used in the whole design, in the processor pipeline
as well as in the memory controller. The whole code is available online [14].

Fig. 2: Datapath of the targeted processor microarchitecture.

4.2 Microarchitecture description

Using these generic modules, we designed the processor whose datapath is de-
scribed in the Figure 2. Based on the RV32I ISA [35], it also supports different
extensions like M (multiply and divide) or ZiCsr.

Its microarchitecture is based on a configurable pipeline with four to seven
stages. Each register (in gray), excepted GPRs, is based on the previously defined
generic register module. The dotted ones on the Figure 2 are registers which can
be enabled or disabled during SystemVerilog generation. In the next sections,
this will be useful to evaluate that our methodology can be applied on design
with microarchitectural variations.

8 M. Escouteloup and V. Migliore

At the microarchitecture level, design choices can directly impact how the
values in registers are modified. In our case, we have to notice that registers are
updated only when a new valid instruction is in the corresponding stage/unit.
This is a common practice to reduce consumption due to bit switches. However,
it leads to the observation that a value is still in a register after many cycles,
which can lead to hidden data transitions.

For the rest of this paper, we identify two different microarchitectures. C5U
(Core 5 Unprotected) is the simple version with a five-stage pipeline: execution
(EX) - memory (MEM) - write back (WB) stages are implemented. C7U (Core 7
Unprotected) is the most complex version with a seven-stage pipeline: EX is split
into three stages and all the execution units are pipelined (one result register).

4.3 Simulation Analysis

The first step of the methodology involves generating an accurate simulation
model from microarchitectural sources/description of our design to analyze po-
tential leaky transitions. After generating the SystemVerilog description, this is
done by compiling a fast executable to simulate our design using Verilator [32]
able to generate .vcd file. This format is the standard to represent digital design
waveforms by simply indicating value changes in each cycle. In our case, this is
the perfect information to track potential transitions: this can simply be done
by parsing files (e.g. with a Python 3 script). Moreover, it is fast applicable in
any hardware design, independently of the internal changes.

5 Microbenchmark

After the extraction of the simulation model, the second step of our methodology
is to try to generate transitions to detect microarchitectural leakage sources. A
common strategy in the literature [23,12,27] is based on microbenchmarks using
specific instruction patterns. If MicroPlumber [27] also uses the RISC-V ISA, it
only targets a simple PicoRV32 core. Based on microbenchmarks available for
the ARM ISA [23,12], we developed our own set for the RISC-V ISA. They are
also available in an online repository [14].

5.1 Test Principle

Listing 1.1: Microbenchmark test structure

1 j a l t r i g g e r o n
2 INSERT NOP
3 i n s t r 0 # Handle op0
4 i n s t r 1 # Handle op1
5 i n s t r 2 # Handle op2
6 i n s t r 3 # Handle op3
7 INSERT NOP
8 j a l t r i g g e r o f f

A hardware design methodology 9

The idea behind microbenchmarking is to design a set of simple program
patterns to test different parts of the microarchitecture. In our case, we want to
reproduce transitions in any part of our processor. In a white-box scenario with
a defined microarchitecture, this is possible with only a small set of microbench-
marks. Instructions could be considered in subsets using the same hardware
mechanisms: ALU, multiply, branch and memories. It then considerably reduces
the number of necessary tests.

All our microbenchmarks are designed following the structure described on
Listing 1.1. First, a trigger is launched at the beginning (jal trigger on) and
stopped at the end (jal trigger off) of each test. It allows synchronizing mea-
surements and the different analyses. Then, nop instructions are inserted (here
using a macro INSERT NOP) to isolate the targeted pattern. Finally, a sequence
of instructions is used to manipulate data and potentially generate transitions.

While two subsequent instructions are sufficient to produce a transition, mi-
crobenchmarks presented here are also adapted for complex microarchitectures
with multiple buffers, FIFOs or superscalar execution. In these systems, addi-
tional instructions are needed to cover all the cases (fill the buffer, evaluate
parallel operations, etc.). In the case of pipelined designs such as our target
datapath presented in Figure 2, two subsequent instructions are always enough
to generate any transition. However, we decided to keep tracking of the four
operands to highlight the detected leakage and their behaviors. It leads to 6
possible transitions which must be tracked.

5.2 Test Examples

We now describe some of the tests we used to generate transitions in our mi-
croarchitecture. Each time, the expected results have been verified by directly
inspecting simulated execution traces: this is a benefit to directly have access
to the RTL description. Another one is to be able to directly check if all the
microarchitectural parts have been tested.

Listing 1.2: alu alu gpr

1 x or t0 , zero , op0
2 x or t0 , op1 , ze ro
3 x or t0 , zero , op2
4 x or t0 , op3 , ze ro

Listing 1.3: alu alu res

1 x or t0 , zero , op0
2 x or t1 , op1 , ze ro
3 x or zero , zero , op2
4 x or zero , op3 , ze ro

Listing 1.2 and Listing 1.3 are tests focusing on leakage due to arithmetic
and logic sequences. In alu alu gpr, the goal is to generate transitions in all the
microarchitectural registers and wires where the instruction results are stored,
but also in an architectural register, here t0. In alu alu res, the goal is almost
the same, excepting that no transition is expected in t0. Then, by executing
both tests, we are supposed to distinguish the impact of architectural and mi-
croarchitectural registers.

10 M. Escouteloup and V. Migliore

Listing 1.4: mul mul s1

1 l i t4 , −1
2 mulhu t0 , op0 , t4
3 mulhu t1 , op1 , t4
4 mulhu zero , op2 , t4
5 mulhu zero , op3 , t4

Listing 1.5: mul mul res

1 l i t4 , 1
2 mul t0 , t4 , op0
3 mul t1 , op1 , t4
4 mul zero , t4 , op2
5 mul zero , op3 , t4

Listing 1.4 and Listing 1.5 focus on leakages due to multiplication support
in the microarchitecture. Generally, multipliers are implemented in dedicated
parts of the system. Then, the corresponding wires and registers are used only
when multiplication instructions are executed. Here, mul mul s1 focuses on pos-
sible transitions between the first operand of the multiplication and mul mul res

between the results.

Listing 1.6: leq lw lw

1 lw t0 , 0(t4)
2 lw t1 , 4(t4)
3 lw t2 , 8(t4)
4 lw t3 , 12(t4)

Listing 1.7: aeq sw sw

1 sw t0 , 0(t4)
2 sw t1 , 0(t4)
3 sw t2 , 0(t4)
4 sw t3 , 0(t4)

Transitions can occur in the whole processor pipeline, but also in any hard-
ware mechanism where data are manipulated, such as memories. Some of our
microbenchmarks try to evaluate them using load and store instructions. On List-
ing 1.6, leq lw lw allows to evaluate leakage when multiple sensitive operands
are successively executed. On Listing 1.7, aeq sw sw is used to detect the impact
of transition when sensitive values are overwriting each other in memory.

All the microbenchmarks previously described are not enough to test all
the possible data transitions in the microarchitecture. Then, we also provide
tests to target other mechanisms, such as the first instruction operand registers,
the second operand registers, the resize buffer used by load instructions, the
forwarding logic and the GPR read ports with immediate/register decoding.

(a) Transition count for alu alu gpr (b) Transition count for alu alu res

Fig. 3: Analysis of ALU operations on C5U.

A hardware design methodology 11

5.3 Model Analysis

After defining the different microbenchmarks, we can execute them, generate the
representing .vcd files for each core and perform the analysis to detect the number
of transitions and the responsible wires/registers. In our case, the execution of
the microbenchmark on our cores is completely deterministic: only one execution
of each test is enough to know in simulation if a transition occurs or not. Then,
to perform the analysis, we simply fix the values of op0 to op3 and directly track
them in the .vcd files. In our case, it only takes a few dozen minutes from the
hardware generation to the analysis end on a desktop computer.

Figure 3a and Figure 3b show the number of transitions occurring when
executing respectively alu alu gpr and alu alu res on C5U. This analysis is
simply performed by parsing the generated .vcd : for each cycle, we compare if a
transition occurs between known operand values (from op0 to op3). Finally, we
are able to know for each microbenchmark if a transition occurs, at which cycle
and on which signal.

As expected, we see the transitions between the operands occurring succes-
sively during a few cycles. In the case of alu alu gpr, because these traces are
completely noise-free, we are even able to distinguish subtle variations at the
end of the curves, representing the last transition during the write-back.

(a) Transition count for C5U (b) Transition count for C7U

Fig. 4: Analysis of the mul mul s1 microbenchmark.

Figure 4a and Figure 4b show the number of transitions occurring when
executing mul mul s1 on both cores C5U and C7U. We can directly observe the
impact of adding the microarchitecture by adding extra-registers in C7U.

Finally, for C5U and C7U, it is respectively 194 and 261 SystemVerilog wires
or registers (logic) with transitions which have been detected in the pipeline
and the internal RAM. If most of them are obviously directly dependent on this
level, it highlights the importance of a generic approach to secure the system
and ensure that no mechanism is missed.

12 M. Escouteloup and V. Migliore

6 Root Cause Protection Principles

After detecting leakage sources, secure the design involves modifying the mi-
croarchitecture. Particularly, we need a way to prevent all the possible leaky
transitions. To keep our methodology as generic as possible, we need to define
protection strategies, which can be applied to the whole system. For that pur-
pose, we decided to generalize a principle called data overwriting.

6.1 Data Overwriting Principle

We saw in Section 2 that transitions occur when signal or register values directly
change from a sensitive value to another. This type of event occurs regularly in
processors where operations follow one another cycle by cycle. Some work [16]
have shown that this can be prevented by overwriting hardware between two data
manipulation. Fundamentally, the goal is to transform any possible op0 → op1
transition (with op1 and op2 sensitive values) to op0 → tmp → op1 with tmp a
temporary independent value.

Theoretically, data overwriting is possible at different levels. First at the
software-level, we can possibly insert extra instructions to push some zero or
random values into hardware mechanisms. However, due to the abstraction from
the ISA, it becomes difficult to put into practice: any missed microarchitectural
register can lead to a leakage. Then, another possibility is to directly enhance
the ISA with dedicated instructions to clear the microarchitecture [16]. Called
fencing, this strategy requires recompiling the executed programs to select when
a clear is needed. Moreover, fencing has a major limitation: it cannot be similarly
applied to architectural registers (e.g. GPRs) where data must not be modified.
Finally, an ideal case would be to directly prevent the appearance of transitions
in the microarchitecture at the hardware level. Then, any program can be safely
executed, without necessary modifications during compilation. The challenge is
then to ensure that no source of leakage is overlooked.

For that, we define five complementary strategies to systematically apply
overwriting at the hardware-level. We then integrate them into our generic bricks
defined with the Chisel language and described in Subsection 4.1, allowing appli-
cation to the entire design. Then, using iterations of our methodology, we ensure
that there is no omitted leakage source.

6.2 Strategy 1.a: Complete Stage Overwriting

The first strategy called complete stage overwriting is described on the Figure 5.
It is the direct implementation of the overwriting principle.

Each cycle, a validity bit allows to indicate if the corresponding register holds
a data (Figure 5a). When the data is consumed by the following pipeline stage
(indicated with a ready signal), an extra-cycle is used to overwrite the register
with a zero (0x0) value. Finally, it is only after this operation that the register
can be reused to hold a new data: it ensures that the transition op0 → op1 is
transformed into op0 → 0x0 → op1.

A hardware design methodology 13

(a) Cycle N (b) Cycle N+1

Fig. 5: Register overwriting

An essential point to note here is that for each overwriting operation per-
formed in the register, the zero value is also propagated through the output
signal. This behavior allows to also initialize all combinatorial signals which de-
pend on this register. Finally, by adding this extra overwriting cycle, it is not
only the registers which are initialized, but the complete pipeline stage including
the combinatorial logic.

6.3 Strategy 1.b: Delayed Data Multiplexing

Execution in a complete system based on a processor is not always linear. For
example, multiplexers in the microarchitecture allow to select data from multiple
sources: register forwarding, skid buffers, etc. In these cases, complete stage
overwriting is not sufficient for the multiplexer output if the sources are not
always synchronized (overwritten at the same cycle).

Fig. 6: Delayed data multiplexing description.

For these mechanisms, we implemented a complementary generic strategy
called delayed data multiplexing described on the Figure 6. The main idea is
simply to introduce an overwrite cycle after each valid multiplexer output.

14 M. Escouteloup and V. Migliore

6.4 Strategy 2: Microarchitectural Register Duplication

Complete stage overwriting combined with delayed data multiplexing allow pro-
tecting all the transition sources in a pipelined structure. However, they have a
major drawback for performances by inserting extra cycles. In the worst case, we
can estimate that it can divide by two the execution rate: one extra overwriting
cycle for each real operation cycle. Moreover, as shown in the Section 2, most of
the leakages are caused by transitions directly occurring in registers. Depending
on the constraints, the strategies 1.a and 1.b can be excessive.

For that purpose, we decided to evaluate another generic strategy called
microarchitectural register duplication. The main idea is to parallelize the register
overwriting and the real operation write to prevent the extra cycle. For that
purpose, we implement the mechanism described on the Figure 7.

(a) Cycle N (b) Cycle N+1

Fig. 7: Register duplication

All the data registers are duplicated. In the cycle N described on the Fig-
ure 7a, one part contains a real data and the other the zero value. A new mul-
tiplexer allows selecting them: the data register is selected for the output but
the zero register is selected for the input. If the data is read and a new one is
written, then the roles are reversed in the next cycle described on the Figure 7b.
Finally, the transition op0 → op1 is split into two transitions op0 → 0x0 and
0x0 → op1.

The initial idea here is similar to the principle of Secure Double Rate Regis-
ters [9]. However, we have two implementation differences. First, the registers are
here parallelized (not pipelined): the latency is not impacted in our case. Intro-
ducing new stages like with Secure Double Rate Registers [9] can have a critical
impact in the case of processor pipelines with data dependencies or branch man-
agement. Second, in our case, we do not need to double the whole frequency to
have a similar rate: it is completely transparent as long as the critical path is
not impacted.

A hardware design methodology 15

6.5 Strategy 3.a: Architectural Register Pre-Writing

Previous strategies can be applied to any microarchitectural registers to prevent
transitions. However, architectural registers (the ones defined by the ISA such
as GPRs) must also be protected if we want to protect any software execution
without specific changes. For that purpose, we defined another strategy called
register pre-writing.

Unlike microarchitectural registers, an architectural register cannot simply
be overwritten after usage: a data stored inside must remain as long as another
valid data is written. This can lead to a leaky transition when the old and new
data are both sensitive. Moreover, simply duplicate registers is here not a valid
solution: the RV32I ISA considers 31 32-bit registers (x0 is hardwired to 0).
Then, we implemented a new mechanism described on Figure 8.

(a) Cycle N (b) Cycle N+1

Fig. 8: GPR overwriting

The main principle of this strategy is to ensure that each register is pre-
written by an insensitive value (here 0x0) just before the new valid data. For
that purpose, we add some logic and registers (where strategies 1 or 2 can be
applied) to each write port of our GPRs. Their goal is to manage the pre-writing
and hold the information to perform the real write in the next cycle. On the
Figure 8a, we can see that the previously pre-written register x1 is receiving a
new data while x3 is not yet ready. In the next cycle on the Figure 8b, it is
finally another real data which is written in x3 when is pre-written.

Finally, for each write operation, there is only one cycle where no valid data
is present on a GPR. However, during this time, the next data is available in
the new write port register. Using a mechanism similar to a register forwarding,
it is then still possible to transfer each time a valid data to a read port: if the
read address is the same as the one in the write port register, the data is directly
transferred, else the GPR is read. The architectural state is still preserved.

6.6 Strategy 3.b: Decoupled Memory Operations

Finally, the last hardware mechanism where data transitions can occur is memo-
ries. Basically, memories are part of the architectural state: the first three strate-

16 M. Escouteloup and V. Migliore

gies cannot be strictly applied. Moreover, simultaneous write/pre-write of the
fourth strategy needs two simultaneous write ports which are not always avail-
able for memories. In this case, we decided to establish a fifth strategy based on
Finite State Machines (FSMs) to perform decoupled memory operations.

Fig. 9: New memory operation description with a real port.

In the case of read memory operations, transitions must be prevented between
successive reads. For that, we decide to implement two-cycle read operations as
described on the Figure 9 (first transaction). Each real read is followed by an
extra-cycle where a read to another address is performed. However, this other
address must be carefully selected and ensure that no leaky data is inside. For
that, we decided to lock the last four bytes of each memory for hardware oper-
ation: the software is not supposed to use them. Then, these memory locations
can be used as the default trash addresses, like the x0 register in the GPRs. In
this way, no transition is possible on the rdata signal and the wdata is set to 0
because it is unused.

The case of write operations is a bit trickier. First, like for an architectural
register write, a pre-write is needed to ensure that no transition occurs between
the old and the new data. This is the first part of the second transaction on the
Figure 9. Then, the real write can be performed. After that, we must ensure that
no transaction can occur with a future operation on both wdata or rdata. Like
for the read operation, an extra-cycle is then needed to perform a write to the
trash address.

Finally, decoupled memory operations can also have an important impact
on performance by slowing memory access. However, they must be considered
when coupled with the other strategies presented here. With complete stage
overwriting, extra-cycles are already introduced: the supplement impact will
be here limited. In the case of register duplication, we only consider leakage
occurring in the register. Then, transactions presented on the Figure 9 can be
simplified: only the pre-write is needed.

6.7 Implementations

For the evaluation in the next section, we have to compare the different strategies
on different microarchitectures. It results in the implementations presented on
the Table 1.

Each core is a different version of the configurable datapath presented on the
Figure 2. C5* cores use the simplest version of the datapath where no execution
unit or intermediate EX registers are used. C7* cores use the complete version

A hardware design methodology 17

Table 1: List of the different processor configurations.
Configuration Datapath

stages
EX unit
registers

S1.a S1.b S2 S3.a S3.b

C5U 4 No No No No No No
C5S1 4 No Yes Yes No Yes Yes
C5S2 4 No No No Yes Yes Partial
C7U 6 Yes No No No No No
C7S1 6 Yes Yes Yes No Yes Yes
C7S2 6 Yes No No Yes Yes Partial

of the datapath, with all the registers enabled. *U cores are the unprotected
ones. *S1 and *S2 integrate respectively different strategies.

7 Evaluation

After implementing the different protection strategies, it is necessary to re-
evaluate the targets to verify the efficiency: it is the last step of our methodology.
For that, like in a classic design flow, we first perform verification in simulations
using the same tools as previously. The results presented in this section were
obtained after several iterations of our methodology, ensuring that no leakage
source has been overlooked at the RTL level. Then, we validate the whole results
by performing measurements and analysis on a real system.

(a) Transition count for C5S2 (b) Transition count for C7S2

Fig. 10: Analysis of the alu alu gpr microbenchmark.

7.1 Simulation model

In the same way as in the Section 5, we execute once all the microbenchmarks
on each target with fixed operands to allow direct transition detection with .vcd
file analysis.

18 M. Escouteloup and V. Migliore

In the case of complete stage overwriting implementations, no more transi-
tions were detected in the processor pipeline as well as in the memory controller.
If it is the final expected result, a particular challenge was not to forget any
leakage sources. Particularly, if the use of Chisel generic modules was enough for
register modification (which are a very large proportion of the leakage sources),
the implementations of delayed data multiplexing were done manually. It high-
lights the interest in a methodology with both a global approach combined with
iterations to manage particular cases.

On the other side, register duplication is easier to implement: generic modules
are enough because only the registers are considered here. Then, as expected,
transitions can still be detected in wires, as described in the Figure 10. As
before, we can even see that the transitions are still implementation-dependent
with differences between C5S2 and C7S2.

7.2 Real Measurements

Simply analyzing transitions from .vcd is not enough to evaluate the efficiency of
protection strategies in the real world. Some steps, such as logic synthesis or the
place-and-route, can influence the behavior of mechanisms previously defined at
the microarchitectural-level. Then, we perform a two-step security assessment,
with evaluations on real FPGA targets to confirm the previous simulated results.

For that, we implemented our cores on the ChipWhisperer platform [25]
with the CW305 FPGA target, integrating a Xilinx Artix-7. The processor is
configured to run at 25 MHz when the sampling frequency is 100 MHz (4 samples
by cycle). Each microbenchmark is then executed 50.000 times with random
input operands, allowing to perform Correlation Power Analysis (CPA). For
each execution on *U and *S2 cores, 300 samples are performed. Due to the
insertion of extra cycles in *S1 cores, more cycles are needed to execute the
different programs: we use for them 500 samples.

The Figure 12 (right part) describes the CPA results for the aeq sw sw mi-
crobenchmark executed on the three versions of the C5 core. In each figure, the
correlation for different transitions is calculated with valid operand values, but
also with random values to estimate the noise range. With C5U, clear correlation
peaks can be detected after 1̃40 samples due to successive manipulation of the
operands. On the other hand, no clear correlation is detected between the power
consumption and data transitions with the C5S1 and C5S2 cores. Then, in this
case, both secure implementations seem to offer the same protection.

The Figure 12 (left part) describes the CPA results for the alu alu s2 mi-
crobenchmark (leakages due to the second operand in arithmetic and logic op-
erations). Like for the previous microbenchmark, we can see in Figure 11a and
Figure 11c that C5U and C5S1 are still respectively leaky and non-leaky de-
signs. The main information here is in Figure 11e where we can observe weak
correlation peaks. Then, for this microbenchmark, register duplication reduces
the leakages (correlation decreases from 0.55 to 0.02), but it does not eliminate
them completely.

A hardware design methodology 19

(a) CPA for C5U (b) CPA for C5U

(c) CPA for C5S1 (d) CPA for C5S1

(e) CPA for C5S2 (f) CPA for C5S2

Fig. 11: CPA for the aeq sw sw microbenchmark.

Fig. 12: CPA for the alu alu s2 (left) and aeq sw sw (right) microbenchmarks.

20 M. Escouteloup and V. Migliore

Finally, considering that we obtained similar results with the other microbench-
marks (C5S2 is leaky depending on the targeted hardware mechanism), we can
conclude that the observations on the FPGA target confirm our previous results
in the simulations. As expected, completely removes transition at the RTL level
allows to remove the root cause of transition leakage. On the other hand, only
preventing transition in registers is not sufficient: leakages are deduced but still
exist, and can be detected in some cases.

7.3 Overhead

The different strategies described in the Section 6 deeply impact the initial mi-
croarchitectures. However, in addition to security, processors must often satisfy
other constraints like performance or resource utilization. The different results
are summarized in the Table 2.

Table 2: Overhead of the different strategies.
Configuration Embench

(cycle)
Embench

(ratio)
LUT

(count)
LUT

(ratio)
FF

(count)
FF (ratio)

C5U 4 412 169 N/A 5 027 N/A 2 498 N/A
C5S1 8 222 197 +86.35% 5 295 +05.33% 2 520 +00.88%
C5S2 4 529 543 +02.66% 6 910 +37.46% 3 102 +24.18%
C7U 5 432 114 N/A 5 617 N/A 3 156 N/A
C7S1 8 051 161 +48.21% 6 244 +11.16% 3 224 +02.15%
C7S2 5 433 002 +00.02% 7.162 +27.51% 4.211 +33.43%

Performance To evaluate performance, we executed the Embench [1] benchmark
on all our microarchitectures and we averaged the number of cycles. Globally,
the obtained results correspond to our expectations. Implementations with com-
plete stage overwriting and associated strategies (*S1) are highly impacted when
changes to register duplication strategies (*S2) are negligible. This is mostly due
to the addition of the extra-cycle. However, we can see that this impact is highly
reduced with the second core version (from +86.35% with C5S1 to +48.21%
with C7S1). This is mainly due to the impact of false branch predictions, which
already have an important impact on the reference version (C5U).

We choose here not to present the impact on the critical path (and the
frequency) of our strategies due to not relevant results: the initial targeted mi-
croarchitectures have not been particularly optimized to increase the frequency.
Then, the impact of simple changes (e.g. simply add a multiplexer) will not be as
representative as for a state-of-the-art processor designed solely for performance.

Resource utilization To evaluate resource utilization, we decided to reuse re-
sults from Vivado 2023.1 during the implementation on the CW305 target. Each
presented results are only for the processor pipeline, excluding the memories,
the peripherals or the branch prediction mechanisms, which are major resource
consumers in the initial designs. Both the number of used LUTs and registers

A hardware design methodology 21

(flip-flops) are presented. Here again, the obtained results correspond to our ex-
pectations. *S2 implementations use more resources due to register duplication.
Depending on the implementations, the register increase is evaluated to +24.18%
or +33.43%: it is more important for C7S2 due to the higher number of pipeline
stages.

8 Conclusion

Power consumption measurements represent a threat to recover information from
hardware systems. Particularly, data transitions are a burden to implement se-
cure software algorithms.

In this paper, we establish a methodology to design transition leakage free
processors. From a RTL model, we explained how we extract at simulation time
information about wire and register states for each cycle. Combined with mi-
crobenchmarks, we use this step to precisely analyze and detect leakage sources
in the microarchitecture. Then, we propose five generic strategies to tackle the
root cause of these leakages: the transitions themselves. Using generic blocks de-
fined with the Chisel language, we modify the microarchitecture of two variants
of a custom RISC-V processor. Finally, we confirm the efficiency of our strategy
by executing the microbenchmarks on an FPGA target and by performing real
measurements. The different results highlight a clear trade-off between security
and performances. If complete stage overwriting effectively removes all potential
leakage sources, it has an important impact on performances (+86.35% num-
ber of cycles in the worst-case). On the other side, register duplication keeps
transition in wires which can possibly be detected with better experimentation
setup.

Future work will concern the other system layers to be able to consider se-
curity issues as a whole. Higher layers such as the ISA will be explored to allow
a better adaptation of the system to the needs of the applications. Instead of
fence instructions which need to be inserted at specific places depending on the
microarchitecture to be effective, another promising strategy is contextualiza-
tion to secure whole sensitive code blocks. Depending on the constraints of the
targeted application, switching between the different strategies presented here
can be an interesting trade-off. Lower layers will also be considered to ensure
that no leakage sources are inserted later in the design process (during synthe-
sis or place-and-route). This is directly linked to the management of glitches,
which can be introduced in lower levels of the design: each security issue must
be tackled at the corresponding system layer.

References

1. Embench: A Modern Embedded Benchmark Suite (2021), https://www.embench.
org/

2. Chisel/FIRRTL Hardware Compiler Framework (2023), https://www.

chisel-lang.org/

https://www.embench.org/
https://www.embench.org/
https://www.chisel-lang.org/
https://www.chisel-lang.org/

22 M. Escouteloup and V. Migliore

3. Arora, V., Buhan, I., Perin, G., Picek, S.: A Tale of Two Boards:
On the Influence of Microarchitecture on Side-Channel Leakage. In:
Grosso, V., Pöppelmann, T. (eds.) Smart Card Research and Ad-
vanced Applications. vol. 13173, pp. 80–96. Springer International Pub-
lishing, Cham (2022). https://doi.org/10.1007/978-3-030-97348-3_5,
https://link.springer.com/10.1007/978-3-030-97348-3_5

4. Arsath K F, M., Ganesan, V., Bodduna, R., Rebeiro, C.: PARAM: A Microproces-
sor Hardened for Power Side-Channel Attack Resistance. In: 2020 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST). pp. 23–34
(Dec 2020). https://doi.org/10.1109/HOST45689.2020.9300263

5. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.X.: On the Cost of
Lazy Engineering for Masked Software Implementations. In: Joye, M., Moradi, A.
(eds.) Smart Card Research and Advanced Applications. pp. 64–81. Lecture Notes
in Computer Science, Springer International Publishing, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3_5

6. Barenghi, A., Brevi, M., Fornaciari, W., Pelosi, G., Zoni, D.: Integrating
Side Channel Security in the FPGA Hardware Design Flow. In: Bertoni,
G.M., Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Se-
cure Design. vol. 12244, pp. 275–290. Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-68773-1_13, http://link.
springer.com/10.1007/978-3-030-68773-1_13

7. Barenghi, A., Pelosi, G.: Side-Channel Security of Superscalar CPUs: Evaluat-
ing the Impact of Micro-Architectural Features. In: Proceedings of the 55th An-
nual Design Automation Conference. pp. 1–6. ACM, San Francisco California
(Jun 2018). https://doi.org/10.1145/3195970.3196112, https://dl.acm.org/
doi/10.1145/3195970.3196112

8. Barthe, G., Gourjon, M., Grégoire, B., Orlt, M., Paglialonga, C., Porth, L.: Masking
in Fine-Grained Leakage Models: Construction, Implementation and Verification.
IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 189–
228 (Feb 2021). https://doi.org/10.46586/tches.v2021.i2.189-228, https://
tches.iacr.org/index.php/TCHES/article/view/8792

9. Bellizia, D., Bongiovanni, S., Monsurrò, P., Scotti, G., Trifiletti, A., Trotta, F.B.:
Secure Double Rate Registers as an RTL Countermeasure Against Power Analysis
Attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26(7),
1368–1376 (Jul 2018). https://doi.org/10.1109/TVLSI.2018.2816914, https://
ieeexplore.ieee.org/document/8327903

10. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking
Kyber: First- and Higher-Order Implementations. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems pp. 173–214 (Aug 2021). https://
doi.org/10.46586/tches.v2021.i4.173-214, https://tches.iacr.org/index.

php/TCHES/article/view/9064

11. Coron, J.S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Con-
version of Security Proofs from One Leakage Model to Another: A New Is-
sue. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F.,
Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Su-
dan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Schindler,
W., Huss, S.A. (eds.) Constructive Side-Channel Analysis and Secure Design.
vol. 7275, pp. 69–81. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29912-4_6, http://link.springer.com/

10.1007/978-3-642-29912-4_6

https://doi.org/10.1007/978-3-030-97348-3_5
https://doi.org/10.1007/978-3-030-97348-3_5
https://link.springer.com/10.1007/978-3-030-97348-3_5
https://doi.org/10.1109/HOST45689.2020.9300263
https://doi.org/10.1109/HOST45689.2020.9300263
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-030-68773-1_13
https://doi.org/10.1007/978-3-030-68773-1_13
http://link.springer.com/10.1007/978-3-030-68773-1_13
http://link.springer.com/10.1007/978-3-030-68773-1_13
https://doi.org/10.1145/3195970.3196112
https://doi.org/10.1145/3195970.3196112
https://dl.acm.org/doi/10.1145/3195970.3196112
https://dl.acm.org/doi/10.1145/3195970.3196112
https://doi.org/10.46586/tches.v2021.i2.189-228
https://doi.org/10.46586/tches.v2021.i2.189-228
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://doi.org/10.1109/TVLSI.2018.2816914
https://doi.org/10.1109/TVLSI.2018.2816914
https://ieeexplore.ieee.org/document/8327903
https://ieeexplore.ieee.org/document/8327903
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-642-29912-4_6
http://link.springer.com/10.1007/978-3-642-29912-4_6
http://link.springer.com/10.1007/978-3-642-29912-4_6

A hardware design methodology 23

12. de Grandmaison, A., Heydemann, K., Meunier, Q.L.: ARMISTICE: Micro-
Architectural Leakage Modelling for Masked Software Formal Verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
41(11), 3733–3744 (2022)

13. De Mulder, E., Gummalla, S., Hutter, M.: Protecting RISC-V against Side-Channel
Attacks. In: 2019 56th ACM/IEEE Design Automation Conference (DAC). pp. 1–
4. ACM, Las Vegas NV USA (Jun 2019). https://doi.org/10.1145/3316781.

3323485, https://dl.acm.org/doi/10.1145/3316781.3323485
14. Escouteloup, M., Migliore, V.: Design platform and microbenchmarks (2025),

https://gitlab.com/herd-ware/root

15. Gao, S., Großschädl, J., Marshall, B., Page, D., Pham, T., Regazzoni, F.: An
Instruction Set Extension to Support Software-Based Masking. IACR Transactions
on Cryptographic Hardware and Embedded Systems p. 43 (2020)

16. Gao, S., Marshall, B., Page, D., Pham, T.: FENL: An ISE to Mitigate
Analogue Micro-Architectural Leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems pp. 73–98 (Mar 2020). https://doi.org/

10.13154/tches.v2020.i2.73-98, https://tches.iacr.org/index.php/TCHES/

article/view/8545

17. Gao, S., Oswald, E., Page, D.: Reverse engineering the micro-architectural leakage
features of a commercial processor. Cryptology ePrint Archive (2021)

18. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: COCO: Co-Design and
Co-Verification of Masked Software Implementations on CPUs. In: 30th USENIX
Security Symposium (USENIX Security’21). p. 18 (2021)

19. Gigerl, B., Primas, R., Mangard, S.: Secure and Efficient Software Masking on
Superscalar Pipelined Processors. In: Tibouchi, M., Wang, H. (eds.) Advances in
Cryptology – ASIACRYPT 2021, vol. 13091, pp. 3–32. Springer International Pub-
lishing, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_1

20. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware
against Probing Attacks. In: Goos, G., Hartmanis, J., van Leeuwen, J.,
Boneh, D. (eds.) Advances in Cryptology - CRYPTO 2003. vol. 2729,
pp. 463–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_27, http://link.springer.

com/10.1007/978-3-540-45146-4_27

21. Le Corre, Y., Großschädl, J., Dinu, D.: Micro-Architectural Power Simulator for
Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors.
In: Fan, J., Gierlichs, B. (eds.) Constructive Side-Channel Analysis and Secure
Design, vol. 10815, pp. 82–98. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-89641-0_5

22. Marshall, B., Page, D.: SME: Scalable Masking Extensions. Cryptology ePrint
Archive p. 25 (2021)

23. Marshall, B., Page, D., Webb, J.: MIRACLE: MIcRo-ArChitectural Leakage Evalu-
ation: A Study of Micro-Architectural Power Leakage across Many Devices. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 175–220
(Nov 2021). https://doi.org/10.46586/tches.v2022.i1.175-220

24. McCann, D., Whitnall, C., Oswald, E.: ELMO: Emulating Leaks for the ARM
Cortex-M0 without Access to a Side Channel Lab. IACR Cryptol. ePrint Arch.
2016, 517 (2016)

25. O’Flynn, C., Chen, Z.: Chipwhisperer: An open-source platform for hardware em-
bedded security research. In: Constructive Side-Channel Analysis and Secure De-
sign (COSADE). pp. 243–260. Springer, Paris, France (Apr 2014)

https://doi.org/10.1145/3316781.3323485
https://doi.org/10.1145/3316781.3323485
https://doi.org/10.1145/3316781.3323485
https://doi.org/10.1145/3316781.3323485
https://dl.acm.org/doi/10.1145/3316781.3323485
https://gitlab.com/herd-ware/root
https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tches.v2020.i2.73-98
https://tches.iacr.org/index.php/TCHES/article/view/8545
https://tches.iacr.org/index.php/TCHES/article/view/8545
https://doi.org/10.1007/978-3-030-92075-3_1
https://doi.org/10.1007/978-3-030-92075-3_1
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
http://link.springer.com/10.1007/978-3-540-45146-4_27
http://link.springer.com/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.46586/tches.v2022.i1.175-220

24 M. Escouteloup and V. Migliore

26. Papagiannopoulos, K., Veshchikov, N.: Mind the Gap: Towards Secure 1st-Order
Masking in Software. In: Guilley, S. (ed.) Constructive Side-Channel Analysis and
Secure Design, vol. 10348, pp. 282–297. Springer International Publishing, Cham
(2017). https://doi.org/10.1007/978-3-319-64647-3_17

27. Roy, A., Schaumont, P.: Microplumber: Finding Hidden Sources of Power-Based
SCL in Microcontrollers. In: 2024 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). pp. 762–765. IEEE, Knoxville, TN, USA (Jul 2024). https:
//doi.org/10.1109/ISVLSI61997.2024.00148, https://ieeexplore.ieee.org/

document/10682629/

28. Shelton, M.A., Chmielewski, L., Samwel, N., Wagner, M., Batina, L., Yarom,
Y.: Rosita++: Automatic Higher-Order Leakage Elimination from Cryptographic
Code. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. pp. 685–699. ACM, Virtual Event Republic of Korea
(Nov 2021). https://doi.org/10.1145/3460120.3485380, https://dl.acm.org/
doi/10.1145/3460120.3485380

29. Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., Yarom, Y.:
Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers. In:
Proceedings 2021 Network and Distributed System Security Symposium. Internet
Society, Virtual (2021). https://doi.org/10.14722/ndss.2021.23137

30. Šijačić, D., Balasch, J., Yang, B., Ghosh, S., Verbauwhede, I.: Towards Ef-
ficient and Automated Side Channel Evaluations at Design Time. Jour-
nal of Cryptographic Engineering 10(4), 305–319 (Nov 2020). https://

doi.org/10.1007/s13389-020-00233-8, https://link.springer.com/10.1007/

s13389-020-00233-8

31. Slpsk, P., Vairam, P.K., Rebeiro, C., Kamakoti, V.: Karna: A Gate-Sizing based
Security Aware EDA Flow for Improved Power Side-Channel Attack Protection. In:
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
pp. 1–8 (Nov 2019). https://doi.org/10.1109/ICCAD45719.2019.8942173

32. Snyder, W.: Verilator (2023), https://veripool.org/verilator/
33. Talaki, E.B., Savry, O., Bouvier Des Noes, M., Hely, D.: A Memory Hierarchy Pro-

tected against Side-Channel Attacks. Cryptography 6(2), 19 (Jun 2022). https:
//doi.org/10.3390/cryptography6020019, https://www.mdpi.com/2410-387X/

6/2/19

34. Veshchikov, N.: SILK: High level of abstraction leakage simulator for side channel
analysis. In: 4th Program Protection and Reverse Engineering Workshop. pp. 1–11.
New Orleans, Louisiana, USA (Dec 2014)

35. Waterman, A., Asanović, K., Hauser, J.: The RISC-V Instruction Set Man-
ual: Volume I, version 20240411 (Apr 2024), https://github.com/riscv/

riscv-isa-manual/releases/tag/20240411

36. Zeitschner, J., Müller, N., Moradi, A.: PROLEAD SW: Probing-Based Soft-
ware Leakage Detection for ARM Binaries. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems pp. 391–421 (Jun 2023). https://doi.
org/10.46586/tches.v2023.i3.391-421, https://tches.iacr.org/index.php/

TCHES/article/view/10968

https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1109/ISVLSI61997.2024.00148
https://doi.org/10.1109/ISVLSI61997.2024.00148
https://doi.org/10.1109/ISVLSI61997.2024.00148
https://doi.org/10.1109/ISVLSI61997.2024.00148
https://ieeexplore.ieee.org/document/10682629/
https://ieeexplore.ieee.org/document/10682629/
https://doi.org/10.1145/3460120.3485380
https://doi.org/10.1145/3460120.3485380
https://dl.acm.org/doi/10.1145/3460120.3485380
https://dl.acm.org/doi/10.1145/3460120.3485380
https://doi.org/10.14722/ndss.2021.23137
https://doi.org/10.14722/ndss.2021.23137
https://doi.org/10.1007/s13389-020-00233-8
https://doi.org/10.1007/s13389-020-00233-8
https://doi.org/10.1007/s13389-020-00233-8
https://doi.org/10.1007/s13389-020-00233-8
https://link.springer.com/10.1007/s13389-020-00233-8
https://link.springer.com/10.1007/s13389-020-00233-8
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://veripool.org/verilator/
https://doi.org/10.3390/cryptography6020019
https://doi.org/10.3390/cryptography6020019
https://doi.org/10.3390/cryptography6020019
https://doi.org/10.3390/cryptography6020019
https://www.mdpi.com/2410-387X/6/2/19
https://www.mdpi.com/2410-387X/6/2/19
https://github.com/riscv/riscv-isa-manual/releases/tag/20240411
https://github.com/riscv/riscv-isa-manual/releases/tag/20240411
https://doi.org/10.46586/tches.v2023.i3.391-421
https://doi.org/10.46586/tches.v2023.i3.391-421
https://doi.org/10.46586/tches.v2023.i3.391-421
https://doi.org/10.46586/tches.v2023.i3.391-421
https://tches.iacr.org/index.php/TCHES/article/view/10968
https://tches.iacr.org/index.php/TCHES/article/view/10968

	A hardware design methodology to prevent microarchitectural transition leakages

