
Partial Key Overwrite Attacks in
Microcontrollers: a Survey

Abstract. Embedded devices can be exposed to a wide range of at-
tacks. Some classes of attacks can be mitigated using security features
or dedicated countermeasures. Examples include Trusted Execution En-
vironments, and masking countermeasures against physical side-channel
attacks. However, a system that incorporates such secure components
is not automatically a secure system. Partial Key Overwrite attacks are
one class of attacks that specifically target the interface between different
components of the security system. These attacks may allow an adver-
sary to extract otherwise protected cryptographic keys through careful
manipulation of memory-mapped registers. So far this powerful class of
attacks has received little attention in the academic literature. In this
work, we provide an overview of known Partial Key Overwrite vulnera-
bilities and how they were used in real-world attacks. Additionally, we
evaluated 31 common microcontrollers and embedded microprocessors
from eleven distinct vendors and detail our findings. Based on a first
high-level evaluation we selected 15 SoCs and performed an in-depth
evaluation. This evaluation revealed that at least eight of these SoCs are
vulnerable to partial key overwrite attacks.

Keywords: key overwrite attack · safe error analysis · microcontrollers
· embedded security

1 Introduction

Microcontrollers and microprocessors are used in many embedded devices and
deployed in a wide range of applications, from consumer IoT to industrial and
automotive. As a result, a single microcontroller must be designed to withstand
diverse threats depending on the context. This varies from attackers target-
ting software vulnerabilities in the firmware, to active and passive semi-invasive
hardware attacks. Countermeasures against such attacks range from hardware
features in the CPU to enhance software security such as Intellectual Property
Encapsulation (IPE) and Trusted Execution Environments (TEEs) to defences
in cryptographic accelerators against side-channel analysis and differential fault
analysis attacks.

However, securing every individual component separately does not necessarily
mean the entire system is secure. One overlooked attack that arises from a naive
composition of individually secured components is the Partial Key Overwrite
(PKO) attack: it allows an attacker to obtain a cryptographic key otherwise
stored in a secure location, typically by careful manipulation of the memory-
mapped input/output (MMIO) register interface.



2

While the concept of PKO attacks has been around for a few decades, they
have received little academic attention. The aim of this paper is twofold: raise
awareness of the existence of these attacks by listing a few real-world cases, and
survey whether common microcontrollers are vulnerable to such attacks or if
vendors incorporate any countermeasures against these attacks. We also provide
the source code used for checking whether the microcontrollers and SoCs we
tested are vulnerable.

1.1 Responsible Disclosure

For every microcontroller in which we discovered a vulnerability, the vendor
has released a newer chip in which the vulnerability was mitigated. Hence, a
full Coordinated Vulnerability Disclosure procedure was not deemed necessary,
although we still notified all chip vendors with confirmed in-scope and vulnerable
products of our upcoming publication.

Additionally, we found a peculiar strangeness in the behaviour of the crypto-
graphic accelerator in the Renesas RA2E1 series of microcontrollers. Although
its security implications are unclear, it was nonetheless disclosed to Renesas.

1.2 Structure of This Paper

This paper starts with background information in Section 2 and a theoretical
description of partial key overwrite attacks in Section 3. Section 4 details a sur-
vey investigating which microcontrollers are vulnerable to PKO attacks. Finally,
Section 5 provides possible countermeasures and Section 6 makes a few final
notes.

2 Background and Related Work

A few publications exist that describe PKO attacks in OpenPGP [14, 7] and the
online file storage service MEGA [3, 2]. OpenPGP private keys are stored at rest
in an encrypted form, the user has to enter a password to decrypt and use the
private key. Similarly, the MEGA service provider (which, in their threat model,
should not be trusted by the user) stores the encrypted key material which is
only decrypted client-side. However, in either case, parts of the key file can be
corrupted, such as elliptic curve parameters stored in plaintext, or a single block
of an ECB-encrypted private key. Intercepting a signature made with such a
corrupted key allows an attacker to then derive the private key. With such a
private key, they can decrypt the files of the user it belongs to.

The above attacks exist in a context rather different from embedded security.
Examples of PKO attacks in the latter context are difficult to find in existing
literature, though a few can be found. For instance, while [4] is best known
as the seminal paper introducing Differential Fault Analysis, in its Section 3
the authors present a different attack, making use of partial key erasure. Their
example presents a discrete encryption device with a built-in key stored in an



Partial Key Overwrite Attacks in Microcontrollers: a Survey 3

EEPROM. An attacker sets a few key bits to 1 by exposing the target to ionising
radiation. Similarly, the authors of [13] used the zeroisation of S-boxes as a
method for key recovery, albeit in a white-box context (that is, they overwrite
the part of a software program that implements the S-box). Almost a decade
later, a similar attack was performed on an FPGA bitstream [28].

Meanwhile, hacking communities have been using partial key overwrite at-
tacks against many targets. Informal sources describe its use on AES copro-
cessors in respectively the Nintendo DSi [15], Nvidia Tegra X1 [29] (used in
the Nintendo Switch), and STM32H730 [12]; while [1] uses it on an RSA co-
processor in the Nintendo 3DS. In each of these cases, the system initialized
the key registers of their coprocessors early during boot, with keys stored in e.g.
one-time-programmable (OTP) memory. This memory is then made unreadable,
after which the system executes lower-privilege code the attackers are able to
exploit. Such an exploit is unable to read the keys from OTP memory or dump
the system bootcode, but using a PKO attack, the keys can still be extracted
from their accelerators. An attacker does not need a software exploit in the typi-
cal sense as a requirement for the PKO attack, in [12] direct debug access is used
instead. The debugger cannot access flash memory (STM32 readout protection
level 1 is used) but can still access peripheral registers. Finally, it is important
to note that attackers have an explicit interest in recovering the key, rather than
merely using the accelerator as a potential decryption oracle [16, 9]. Game con-
soles typically encrypt and sign both the entire filesystem as well as individual
games and software binaries. Installing unauthorized software on such a device
thus requires circumventing every protection layer. Performing the encryption
and decryption of full game install images — or even an entire filesystem —
offline instead of having to query the console itself for this is much less of a
hassle.

Table 1 gives a summary of all previously-published attacks, along with which
cipher they targetted and which method was used to mount the attack.

Target Cipher Key storage Method PKO? Circle Citation

OpenPGP RSA, ECC file client-side
malware

✔ academia [14, 7]

MEGA RSA, ECC file misbehaved
server

✔ academia [3, 2]

(vague) generic EEPROM UV light ✔ academia [4]

software AES, DES (vague) software
tampering

✘

(S-box)
academia [13]

FPGA AES, DES bitstream bitstream
tampering

✘

(S-box)
academia [28]

(vague) RSA (vague) FI (SEA) ✔ academia [33]

(vague) DES (vague) FI (IFA) ✔ academia [8]

Nintendo
DSi

AES WO MMIO reg VRISKA
(exploit)

✔ hobbyist [15]



4

Nintendo
3DS

RSA WO MMIO reg VRISKA
(exploit)

✔ hobbyist [1]

Tegra X1 AES WO MMIO reg VRISKA
(exploit)

✔ hobbyist [29]

STM32H730 AES WO MMIO reg VRISKA
(debug pins)

✔ hobbyist [12]

Many AES, RSA WO MMIO reg VRISKA ✔ academia you are
here

Table 1: Summary of published attacks making use of Partial Key Overwriting
and similar techniques. The rows list the target attacked, the ciphers involved,
the type of key storage used (‘WO’ means ‘write-only’), the method used to
mount the attack, whether the attack makes use of partial key overwrites, which
community the attack was discovered in, and the relevant citation(s).

2.1 Attack Categorisation

There is no real agreement to which class of attacks PKO attacks belong. The
authors of [34, Section VI.B.3] mention PKO as a subtype of Safe Error Analysis
(SEA) attacks1. However, SEA is more widely understood as a subclass of (phys-
ical) fault injection (FI) attacks similar to Ineffective Fault Analysis (IFA) [33,
8, 34]. Hence, referring to PKO attacks as SEA might lead to confusion.

While referring to PKO as SEA makes sense from a purely cryptographic
point of view, this paper focuses on PKO attacks in embedded devices, where
they arise from imperfections in the interface between components. This is a
property they have in common with Interrupt Oriented Programming [30], DMA-
based attacks such as [6], the use of ‘hardware gadgets’ in [22], the ntrcardhax
exploit in the Nintendo 3DS2 [25] and the vulnerability in the Falcon TSEC
coprocessor in the Tegra X1 [24].

As far as we are aware, no properly defined category for the attacks in the
previous paragraph seems to exist. Yet, these attacks make use of vulnerabilities
that have several elements in common: The vulnerabilities lie not in a single
component of the system-on-chip (such as the CPU, memory, an accelerator,
etc.), but rather arise from the combination of these components in a system,
often due to complexities in the interface between them (such as their register
interface, DMA, interrupts, ‘event system/routing’, etc.). We hence propose to
name the category of attacks that exploit these vulnerabilities Vulnerable
Result of Individually Secure K/Components Attacks, or VRISKAs3 for
short.

We can view the PKO attacks treated in this paper as SEA mounted us-
ing a VRISKA. This differs from the attacks on OpenPGP and MEGA which
are mounted using software vulnerabilities, and from ‘traditional’ SEA which

1 “write-only cryptographic key registers should never allow partial update, otherwise
the attacker can test a partial key guess by detecting these collisions.” 2 Not to
be confused with ntrboot, a different exploit in the 3DS system. 3 Yes, after the
Homestuck character Vriska Serket.



Partial Key Overwrite Attacks in Microcontrollers: a Survey 5

is mounted using FI. Note that while more ‘traditional’ SEA attacks use tran-
sient faults, the modifications made to the key register in this work are more
permanent in nature: they last until the next reset of the chip.

Similarly, with the above definition, ntrcardhax from [25] used a VRISKA
on a time-of-check-vs-time-of-use vulnerability to perform a buffer overflow, [24]
builds a ROP chain using a VRISKA, and [22] uses one as a source of side-channel
information.

3 Theory of Partial Key Overwrite Attacks

In this section, we first define the attacker model. Afterwards, we describe how
PKO attacks may be used against cryptographic coprocessors.

3.1 Attacker Model

In a PKO attack on a cryptographic coprocessor, the attacker can query the
coprocessor as an encryption oracle and is able to overwrite parts of the key used.
This key is never directly exposed to the attacker, it is often made inaccessible
through some sort of privilege separation mechanism. It is the goal of the attacker
to obtain the key.

Typically, the attacker takes control of the CPU to query the cryptographic
coprocessor, but other possibilities exist as well, such as debug access. Similarly,
the ‘privilege separation mechanism’ can come in many forms. Sometimes, the
key is loaded into the coprocessor by firmware code running inside a TEE or
otherwise locked away by an early system boot stage. In other cases, it might
be loaded from some protected memory region such as one-time-programmable
memory. In the case of debug access instead of software exploits, special code
readout protection mechanisms serve as this privilege separation.

3.2 Attack Method for Symmetric-Key Coprocessors

The attack consists of two phases: obtaining ciphertexts with partly-overwritten
keys, and a ‘brute-force’ calculation to obtain the key. These are depicted in
Figure 1.

In the first phase, the attacker will start by querying the encryption oracle
with its original key K0 using a known plaintext P , receiving a ciphertext C0.
The exact value of P does not matter, but it must be kept constant across all
queries. Then, the attacker proceeds by setting a single subkey4 to an attacker-
chosen value, resulting in the oracle using a keyK1. The attacker then queries the
oracle again, obtaining the ciphertext C1. We define n as the number of subkeys.

4 For example, an AES-128 coprocessor with a memory-mapped IO (MMIO) interface
will have its 128-bit key accessible over this MMIO interface. However, it is likely that
this key is larger than the width of the memory bus. Hence, the key is split into multiple
subkeys (between 8 and 32 bits in size, typically) which may be written to individually.



6

This procedure continues until the key is fully overwritten by the attacker save
for one word, resulting in a key Kn−1 with corresponding ciphertext Cn−1.

In the second phase, a brute-force calculation with reduced complexity to
obtain the original key K0 is performed. The individual subkeys are sufficiently
small to be within reach of brute-forcing (typically 32 bits at most in practice).
The attacker can thus work backwards from Kn−1 to Kn−2 by knowledge of
Cn−1 and Cn−2, after which Kn−3 is in computational reach, and so on. This
continues until K0 is recovered.

(a) Phase 1: the coprocessor, acting as
an encryption oracle, is queried for ci-
phertexts (A). For each step, the at-
tacker overwrites one more subword of
the key (B), while keeping to receive ci-
phertexts. This ends when all but one
subwords of the key are left

(b) Phase 2: in the last query, only one
subword K3 is left. The ciphertext C3

obtained from the coprocessor makes
it possible to brute-force the unknown
key bits K3 (C). This then makes it
possible to obtain K2, and so forth (D),
until the full key is derived

Fig. 1: Diagram of a basic PKO attack on a symmetric-key coprocessor

While the above matches the description in [4], variations of this attack are
possible as well. For example, the register interface of the coprocessor may expose
the key using a shift register instead. This has an influence on the bookkeeping,
but the method is otherwise almost unchanged. This contrasts to [15], wherein
Korth first queries the oracle with state K0 to obtain C0, but then starts writing
to the same key register, iterating over every possible value of a subkey, until the
same ciphertext C0 is reached again. This procedure is repeated for every subkey.
This attack method thus performs both phases at the same time. Hence, the
precise method of attack can be adapted depending on implementation details
of the MMIO register interface. Countermeasures have to account for all of these
variants.



Partial Key Overwrite Attacks in Microcontrollers: a Survey 7

3.3 Attack Method for RSA Coprocessors

In [1], Myria provided a novel technique for applying PKO attacks to RSA
accelerators as well. It assumes the coprocessor has separate registers for message
M , private exponent d, and public modulus N .

The attacker sets the message to a small prime M ′, and the modulus to a
prime p greater than N and whose multiplicative order is a smooth number.
The exponent register is left untouched. The attacker then queries the oracle,
obtaining C = M ′d mod p. With this specific choice of root M ′ and prime
modulus p, it is computationally feasible to calculate d = dlogM ′C mod p using
the Pohlig-Hellman algorithm [21].

No iterative or recursive approach is required, unlike the symmetric-key vari-
ant explained in Section 3.2. The attacker must perform some offline computa-
tions, however: generating a suitable prime p of which its multiplicative order is
a smooth number beforehand, and performing the Pohlig-Hellman algorithm af-
terwards. This contrasts to the symmetric-key approach, which cay be performed
in an entirely online manner.

3.4 Attack Methods for ECC and PQC Coprocessors

It is possible to perform PKO attacks on Elliptic Curve Cryptography (ECC)
and Post-Quantum Cryptography (PQC) coprocessors as well. Do note that,
while the details of an attack depend on the register interface of the coprocessor,
no vulnerable coprocessors implementing either ECC or PQC were found in the
survey in Section 4. Hence, the below attacks are merely hypothetical.

Attacks on ECC coprocessors depend on the exact cryptosystem used. For
ECDSA, a logical approach for an attacker would be to have a signing oracle gen-
erate two different signatures with the same nonce, or at least influence enough
of the nonce to perform the lattice attack described in [17]. For Curve25519 and
other systems, input parameters could be tweaked to perform an attack similar
to the one described in Section 3.3.

For LWE-based PQC schemes such as ML-KEM (also known as Kyber),
an attacker could iterate over possible values of every subkey of the secret key
reminiscent of the symmetric-key case of [15] in Section 3.2. A decapsulation
error would then inform the attacker on whether the subkey guess is correct,
reminiscent of [33].

3.5 Practical Considerations

While the calculations required for a PKO attack are in the realm of the practical,
these might still take a considerable amount of time on a small microcontroller.
This depends on several details, such as the subkey register word size used in
the accelerator interface. Performing these attacks efficiently requires a bit of
thought.

One may also carry out the second phase described in Section 3.2 in an
offline manner. The need for offline attacks depends on the granularity with



8

which the key subwords can be overwritten. If 8-bit writes are possible, a byte-
by-byte bruteforce of an AES-128 key requires 16 · 28 = 212 steps, which is
perfectly feasible even on an 8-bit 1 MHz microcontroller, and thus would need
no extra offline processing. With a 32-bit write granularity, 4 · 232 = 234 ≈
17 billion iterations are instead required. Such a computation takes about 16
minutes single-threaded on an Intel Raptor Lake i7-13700 workstation using
AES-NI, while it takes about 6 hours on an STM32L562 at 110 MHz and making
use of its AES accelerator.

Additionally, when performing a PKO attack on an RSA coprocessor, the
prime modulus p can be chosen by constructing possible candidates of the form
2x3y5z+1 for any natural numbers x, y and z, and selecting one that is prime and
greater than the original RSA modulus. (In our experience, first constructing a
number of smooth multiplicative order and then checking for primality yields a
usable result much faster than generating a prime and checking for smoothness.)
The root (and plaintext) is typically set to 11 or 13. A Python script implement-
ing both this search and the Pohlig-Hellman algorithm needs less than 5 seconds
to run either calculation on an Intel Skylake i7-6500U laptop, while performing
these computations at all on a microcontroller can be challenging.

4 Prevalence Survey of Vulnerable Cryptographic
Coprocessors

In this section, we perform a survey to check how many off-the-shelf microcon-
trollers and microprocessors contain cryptographic coprocessors vulnerable to
PKO attacks as described in the previous section.

4.1 Method

This survey is performed in two parts: in the first part, datasheets and reference
manuals of available microcontrollers and microprocessors are scanned, to find
possibly-vulnerable candidates. In the second part, these chips are then ordered
and some code is loaded onto them that tests for the presence of the vulnerability.

Compiling the list of candidates is done by first compiling a list of com-
mon microcontrollers and SoCs with cryptographic accelerators, then selecting
chips with some form of software privilege separation, and finally reading their
reference manuals to disqualify chips with software-readable key registers. The
full list of chips considered (and some not considered) can be found in Table 2.
Code used for vulnerability testing can be found at https://anonymous.4open.
science/r/pko-testcode-5D2D.

4.2 Limitations

The methodology described above skews towards not investigating chips without
documentation on their cryptographic coprocessors. For example, for many mi-
crocontrollers made by Renesas and large microprocessors/SoCs made by Texas

https://anonymous.4open.science/r/pko-testcode-5D2D
https://anonymous.4open.science/r/pko-testcode-5D2D


Partial Key Overwrite Attacks in Microcontrollers: a Survey 9

Instruments, Broadcom or NXP, the documentation on their cryptographic hard-
ware is only available under NDA. Several other microprocessors made by e.g.
Qualcomm, Mediatek, Samsung, Amlogic or Rockchip meanwhile have no pub-
licly available documentation at all. Hence, smaller microcontrollers are overrep-
resented in this work.

Secondly, it would be interesting to know how many devices existing in the
wild contain secrets that may be leaked using PKO attacks. However, perform-
ing such a study is much more impractical: it would require 1. buying a large
number of off-the-shelf devices, 2. opening them up to discover which microcon-
troller or microprocessor is used inside (which is often not known before physical
disassembly), 3. checking if the chip used has an accelerator vulnerable to a PKO
attack, 4. extracting the firmware to check if the vulnerable accelerator is used
in a manner in which the vulnerability is actually in scope (the ‘privilege sep-
aration’ explained in Section 3.1 has to be configured properly as well), 5. and
finally try to exploit this vulnerability. Such a survey would require buying a
large number of devices that might turn out to not use any vulnerable chips
at all, while this cost cannot be recovered as the warranty will have to be void
(due to disassembly of the device). Hence, this survey only concerns itself with
researching which microcontrollers could possibly be configured in a way that
will lead to key leakage through a PKO attack. We therefore cannot make any
statements on the prevalence of PKO vulnerabilities in real-world devices.

4.3 Chip Selection

Most of the chips included in this study store the key in simple write-only MMIO
registers (STM32 series, ESP32 RSA) or a shift register (TI MSP). A few chips
with undocumented cryptographic accelerators were included as well (SAML11,
RA2E1) of which we will reverse engineer the functioning, but doing this for
every chip with undocumented accelerator is impractical.

The NXP i.MX series of microprocessors feature a ‘CAAM’ cryptographic
accelerator, though its documentation is only available under NDA. However,
besides CAAM, these chips also contain an HDMI encoder with hardware to
perform HDCP (HDMI video DRM) cryptography. The HDCP key registers are
readable, hence a PKO attack may not be necessary here.

The NXP LPC55S6x series also contains multiple accelerators: CASPER for
RSA and ECC, PRINCE for flash memory contents, and an AES accelerator.
CASPER, the public-key accelerator, only operates on units of 64 bits. It thus
has to be called many times to perform a single full public-key operation. Hence,
it cannot store a full private key. This limited design also makes it likely that
its initial inputs are overwritten by temporary values. PRINCE only uses keys
sourced from the system PUF. The AES accelerator uses the same MMIO regis-
ters for key and data input, rekeying is only possible by completely resetting the
AES peripheral. With neither of these accelerators, PKO attacks seem possible.

Most other chips not further treated in this study (such as the NXP i.MX
HDMI encoder, the TI MSP432E as well as several STM32G4 and STM32Fx
chips from STMicroelectronics) have readable key registers. While they do not



10

support TrustZone-M, they still have ‘privilege separation’ mechanisms, ranging
from proprietary IPE features (‘IP protection’ and ‘PCROP’, respectively) to, in
the case of the STM32, a debugger flash readout protection feature (RDP level
1). In these cases an attacker operating under the model defined in Section 3.1
may be able to directly read the key (otherwise stored in protected non-volatile
storage) from the cryptographic accelerator, hence a PKO attack would not be
relevant in these chips.

Manufacturer Name Ciphers Priv. sep. Used Notes

Espressif ESP32S2, S3,
C3

RSA Encrypted
keys

✔ AES key registers
readable, thus fo-
cus on RSA

Microchip SAML11 AES TZ-M ✔ only access
through ROM
API

Renesas
RA2E1 AES ‘Security

MPU’
✔ No docs, reverse

engineer

RA4M2 AES TZ-M ✔ No docs, reverse
engineer

STM32G0,
STM32Fx

AES PCROP ✔ Write-only key
regs

ST

STM32L5 AES, RSA,
ECC

TZ-M ✔ Write-only key
regs

STM32U0 AES HDP ✔ Write-only key
regs

STM32H5, U5 AES, RSA,
ECC

TZ-M ✔ Has mitigations
for RSA & ECC,
cf. [27]

STM32MP1 AES TZ-A ✔ Write-only key
regs

TI
MSP430FR59 AES IPE ✔ Key store is shift

register

MSP432P AES IPE ✔ same as MSP430

Microchip ATXmega AU AES, DES N/A ✘ Key registers
readable

NXP
i.MX 8M AES, RSA,

ECC
TZ-A ✘ Key registers

readable (HDMI
encoder, cf. [18])

LPC55S6x AES, RSA,
ECC

TZ-M ✘ Countermeasures
(cf. [19])

ST
STM32G4,
STM32Fx

AES PCROP ✘ Key registers
readable (cf. e.g.
[26])

STM32H7 AES PCROP ✘ Known vulnera-
bility [12]



Partial Key Overwrite Attacks in Microcontrollers: a Survey 11

TI MSP432E AES IPE ✘ Key registers
readable (cf. [31])

GigaDevice
GD32L23 AES N/A ✘ No priv. sep. to

attack

GD32VW55x AES key from
OTP

✘ Priv. sep. trivially
not vulnerable

Infineon PSoC 64 AES N/A ✘ No priv. sep.
to attack (only
accessible from
high-privilege
M0+)

Microchip SAML2x AES N/A ✘ No priv. sep. to
attack (but vul-
nerable key regis-
ters)

TI
SimpleLink,
MSPM0

AES N/A ✘ No priv. sep. to
attack

MSPM0Lx22x AES N/A ✘ Countermeasures
(cf. [32]), chip not
available

Allwinner sun4i, 8i AES N/A ✘ No docs

Microchip PIC32CMLx AES TZ-M ✘ No docs, only ac-
cessible through
SDK

NXP
i.MX 6/7/8 AES, RSA,

ECC
TZ-A ✘ No docs (‘CAAM’

module), NDA re-
quired

i.MXRT10xx AES secure boot ✘ No docs (‘DCP’
module), NDA re-
quired

Renesas RA, RX AES TZ-M
(some)

✘ No docs, NDA re-
quired

Rockchip RK3399,
RK3588

AES TZ-A ✘ No docs

TI AM Sitara AES TZ-A ✘ No docs, NDA re-
quired

Xilinx ZynqMP AES TZ-A ✘ No docs, NDA re-
quired



12

Table 2: List of all chips considered in this survey. The column ‘ciphers’ denotes
the ciphers supported by the accelerators which were deemed relevant to this
work. The column ‘priv. sep.’ lists the name of the privilege separation mecha-
nism present in the microcontroller. ‘TZ-A’ and ‘TZ-M’ mean TrustZone-A and
-M, respectively. ‘PCROP’, ‘HDP’ and ‘IPE’ are proprietary mechanisms that
disallow read access to certain regions of code flash, c.f. [5, 23]. The column
‘used’ shows whether this chip was then further investigated in this survey for
the presence of vulnerabilities against PKO attacks.

4.4 Results and Analysis

Table 3 presents a summary of the results of the survey.

Manufacturer Name Year Vuln. Cplx. Notes

TI
MSP430FR5994 2016 ✔ 16 · 28 Cf. Section 4.4.5

MSP432P401R 2015 ✔ 16 · 28 same accel. as
MSP430

STM32L562
(AES)

2018 ✔ 4 · 232 Cf. Section 4.4.1

ST

STM32G061 2018 ✔ 4 · 232 Same accel. as L5

STM32U083 2024 ✔ 4 · 232 Same accel. as L5

STM32MP157 2019 ✔ 4 · 232 Same accel. as L5

STM32H730 2019 ✔ 4 · 232 Known vuln. [12]

STM32L562
(RSA/ECC)

2018 ? N/A Cf. Section 4.4.1

STM32U5A5, H5
(RSA/ECC)

2021-2023 ? N/A Cf. Section 4.4.1

Espressif ESP32S2, S3, C3 2020-2021 ✔/✘ P-H Cf. Section 4.4.2

Microchip
SAML21 2015 N/A N/A Technically out of

scope, cf. Section
4.4.3

SAML11 2018 ✘ N/A Cf. Section 4.4.3

Renesas
RA2E1 2020 ✘ N/A Cf. Section 4.4.4

RA4M2 2019 ✘ N/A Cf. Section 4.4.4

ST STM32U5A5, H5
(AES)

2021-2023 ✘ N/A Cf. Section 4.4.1

Table 3: List of all evaluated chips, and an indication of whether their accel-
erators are vulernable to PKO attacks or not (and if so, notes the complexity
of the offline computations required for the attack, ‘P-H’ denotes use of the
Pohlig-Hellman algorithm).

Some of the results for particular chips are unclear or require further elabo-
ration. These notes are listed below:



Partial Key Overwrite Attacks in Microcontrollers: a Survey 13

4.4.1. ST STM32 series The STM32L5, G0, MP1 and U0 all share the same
AES accelerator, hence these are all equally vulnerable. Separate key words can
be updated independently as long as the EN bit in the control register is set to
zero.

The accelerator shared between the STM32U5 and H5 is based on the former
one, but went through an Arm Platform Security Architecture (PSA) level 3
certification process [27]. Countermeasures against PKO attacks have now been
implemented as well. This is reflected in the register interface, with an extra
KEYVALID bit in the status register.

However, the public-key accelerator (‘PKA’) of the STM32 series is more
troublesome. People have reported5 having issues with getting the accelerator to
work at all in the first place. We also faced this problem in our experimentation,
and are thus unable to determine whether it is vulnerable to PKO attacks.

The STM32U5 extends the L5 PKA by adding different commands for com-
putations using either the public or private key (automatically erasing remanent
private key data in the latter case), while the L5 does not distinguish between
the two. Hence, if the correct operation is used, the STM32U5 PKA should not
be vulnerable to PKO attacks.

4.4.2. ESP32 The ESP32 RSA accelerator can be used in two modes: the
‘normal’ mode in which the accelerator is accessed directly and keys are supplied
by the CPU, and the ‘Digital Signature’ (DS) mode in which the CPU uploads
an encrypted key blob to the accelerator. The accelerator autonomously decrypts
this key blob using a key from the one-time-programmable (OTP) memory, this
key is not visible to the CPU.

In the ‘normal’ mode, the MMIO registers that store the RSA parameters
are write-only. However, every parameter on its own (e.g. the modulus) can be
changed without necessarily invalidating the others. Hence, a Pohlig-Hellman-
based attack (c.f. Section 3.3) is possible. Though, the practicality of such an
attack is questionable, as there is no memory protection measure (like PCROP
or IPE) able to protect a key from an attacker-controlled CPU. Furthermore, the
default Espressif driver code for the RSA peripheral immediately powers down
said peripheral, erasing the keys stored in MMIO registers.

In the DS mode, there again seems to be an issue with the main functioning of
the accelerator, and we struggled with inconsistent results here as well6. However,
the output of the accelerator was still deterministic, unlike in the STM32L5.
Although, in this case, overwriting only the base and modulus of the accelerator
after a DS operation always results in an output of zero. Hence, it seems that
after a DS operation, the MMIO registers for the RSA parameters are always
cleared. Thus, in DS mode, the ESP32 RSA accelerator is not vulnerable to PKO
attacks.

5 https://community.st.com/t5/stm32-mcus-security/pka-modular-exponentiation

-not-working-as-expected/m-p/699510 6 As reported at e.g.
https://esp32.com/viewtopic.php?f=12&t=42057

https://community.st.com/t5/stm32-mcus-security/pka-modular-exponentiation-not-working-as-expected/m-p/699510
https://community.st.com/t5/stm32-mcus-security/pka-modular-exponentiation-not-working-as-expected/m-p/699510
https://esp32.com/viewtopic.php?f=12&t=42057


14

4.4.3. Microchip SAML11 The SAML11 has an AES accelerator, though the
only documented way to make use of it is to use a runtime utility function which
resides in the boot ROM. The contents of the boot ROM cannot be read by
regular user code.

Using timer interrupts to trace execution flow (using the same method as
described in [5, Sec. 3.3]), it is possible to obtain some information on the struc-
ture of the boot ROM code. We considered using DMA to create extra bus
contention as a timing side channel leaking information on which memory is ac-
cessed at which point (cf. [6]). However, this is not useful, as the cryptographic
accelerator hardware is attached to the Cortex-M23’s single-cycle I/O bus, which
is exclusively controlled by the CPU.

The entire AES key schedule appears to be calculated entirely in software,
with the cryptographic acceleration MMIO peripheral seemingly only responsible
for the SubBytes, ShiftRows and MixColumns steps of AES, one round at a time.
Hence, the key never leaves the CPU registers and does not get stored in any
MMIO register. The SAML11 ROM AES routines are thus not vulnerable to a
PKO attack.

Note that the older SAML2x series has an AES accelerator of which the key
register allows partial overwrites. However, this older series does not contain
any privilege separation mechanism (such as TrustZone, ‘IP encapsulation’, or a
debug lockout level that disallows flash access but allows MMIO access) for an
attack to be meaningful.

4.4.4. Renesas RA2E1 and RA4M1 Cryptographic accelerator designs in
Renesas microcontrollers are often shared between multiple chips. These acceler-
ators exist in several ‘versions’ or ‘generations’. RA2xx MCUs have simple AES
and TRNG peripherals, while RA4xx and up have a more comprehensive ‘Se-
cure Crypto Engine’ (SCE). Different ‘generations’ of SCE exist, numbered 5,
5B, 7 and 9. The SCE peripherals support more ciphers (sometimes asymmetric
ones as well) and block cipher modes of operation, as well as key ‘wrapping’.
Renesas does not publish documentation on the cryptographic accelerators in
its microcontrollers. However, they do publish obfuscated driver code as part of
their ‘Flexible Software Package’ (FSP).

For the RA2xx series, reverse-engineering this code revealed a rather standard
AES accelerator, though it does incorporate PKO countermeasures (as evidenced
by bits 24 and 25 in the 32-bit register at offset +4). However, there seems to
be a ‘secret’ bit (#15) in this register that is unused by the FSP driver code.
Setting this bit seems to cause a time-sensitive perturbation, where sometimes
the result of a cryptographic operation is not propagated to the output registers.
The exact functioning of this bit and its security implications are unclear.

The SCE peripheral (in RA4xx and up) has a ‘command interface’ where a
16-byte magic number must be supplied to perform a command, such as loading
a key, setting the mode of operation, etc. The peripheral also mandates the use
of ‘wrapped’ keys. ‘Wrapped’ keys are encrypted using an on-chip key residing
inside the SCE hardware [10]. Next to this encryption layer, they are protected



Partial Key Overwrite Attacks in Microcontrollers: a Survey 15

by a MAC as well, to protect against possible tampering [11]. A ‘wrapped’ key
is thus twice the size of a plain key: an 128-bit AES key becomes 256 bits in size
when wrapped, an AES-256 plain key turns into a 512-bit wrapped key.

Any key passed to the SCE meant for cryptographic operations must be
supplied in its ‘wrapped’ form. These cannot be tampered with, hence PKO
attacks are not possible on RA4xx/6xx/8xx MCUs either.

4.4.5. TI MSP430, MSP432 and MSPM0 This subsection concerns itself
with the separate MSP430, MSP432 and MSPM0 lines of microcontrollers, all
from Texas Instruments. While they have different CPU cores and designs, they
do share some peripherals, including the AES accelerator. TI MSP chips use a
key MMIO register that acts as a shift register, as opposed to making any key
word separately addressable as done on e.g. the STM32 series.

The AES accelerator keeps track of whether the key is fully written through
the AESKEYWR bit in the AESASTAT register. However, this bit is writeable, and
hence partial keys will be accepted as well.

Many MSP430 chips as well as the MSP432P incorporate some form of an
‘IP protection’ feature, as detailed in [5]. Most MSPM0 chips do not support
this, except for the newer MSPM0Lx22x and MSPM0G351x models — currently
the only PSA-certified microcontrollers in the MSPM0 series. However, these
models instead incorporate an ‘ADVAES’ accelerator, which, according to their
reference manual, does protect against PKO attacks [32]. At the time of writing,
these MCUs are not yet available, and thus statements from the reference manual
could not be verified.

5 Countermeasures

It should hopefully be clear by now that without countermeasures against PKO
attacks, having write-only instead of read-write key registers makes little differ-
ence. However, care must be taken when implementing hardware countermea-
sures. The internal state machine that detects partially-overwritten keys must
function regardless of the MMIO register access pattern, and there should be no
‘force OK’ bit (such as in the MSP430), yet it is possible to do this correctly (as
seen in the STM32U5 and Renesas RA2E1). When designing the register inter-
face of a cryptographic accelerator, a command-based interface (such as seen in
the Renesas SCE) with which only a full key can be submitted at once may be
a more prudent design option.

When using a vulnerable accelerator in a microcontroller, firmware engineers
can mitigate PKO attacks in several ways. This mainly relies on redrawing the
border between secure and nonsecure system components such that the accelera-
tor falls entirely within the area marked as secure, instead of straddling the bor-
der. For example, if a TEE such as TrustZone-M is available, the cryptographic
accelerator should be configured to only allow accesses from within TZ secure
code (and expose a cryptographic software API to nonsecure code if needed). If



16

no TEE exists in the chip, disabling interrupts during the operation of the accel-
erator and clearing the key registers afterwards should suffice against attackers
taking over the CPU, though this could incur extra CPU time overhead. Chips
with different debug readout protection levels should be configured to use the
highest protection level (though downgrade attacks exist for this, e.g. [20] in the
STM32 series).

6 Conclusion

As shown in Section 4.4, several off-the-shelf microcontrollers available on the
market from different vendors are vulnerable to PKO attacks. Despite a lack
of attention from academia, real-world attackers have demonstrated a sustained
interest in these vulnerabilities. Note, however, that some chips included in the
survey are in a worse situation where an adversary does not even need to use
a PKO attack to extract keys from cryptographic accelerators, while those keys
would still otherwise reside in protected nonvolatile memory.

Luckily, microcontroller manufacturers seem to move towards incorporating
countermeasures: after having brought vulnerable chips to market, Microchip,
TI and ST have all released newer models with countermeasures against PKO
attacks. This seems to be correlated with the creation of the Arm PSA certi-
fication standard, of which the specifications were released in 2017. This could
be an indication that such certification efforts increase the security of consumer
products, though it is unclear to what extent PSA certification has actually in-
fluenced these matters: the only publicly available documentation with a certain
degree of details belongs to level 1 certification only, and it is unclear which
exact requirements are maintained by certification laboratories.

Code used for testing microcontrollers and microprocessors for vulnerability
against PKO attacks can be found at https://anonymous.4open.science/r/
pko-testcode-5D2D.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. 3dbrew, 3DS System Flaws, Archived at https : / / web . archive . org / web /

20240829223013/https://www.3dbrew.org/wiki/3DS_System_Flaws#Hardware.
https://www.3dbrew.org/wiki/3DS_System_Flaws%5C#Hardware (visited on
09/08/2024)

2. Albrecht, M.R., Haller, M., Mareková, L., Paterson, K.G.: Caveat Implementor!
Key Recovery Attacks on MEGA, Cryptology ePrint Archive, Paper 2023/329
(2023). https://eprint.iacr.org/2023/329.

3. Backendal, M., Haller, M., Paterson, K.G.: MEGA: Malleable Encryption Goes
Awry, Cryptology ePrint Archive, Paper 2022/959 (2022). https://eprint.iacr.
org/2022/959.

https://anonymous.4open.science/r/pko-testcode-5D2D
https://anonymous.4open.science/r/pko-testcode-5D2D
https://web.archive.org/web/20240829223013/https://www.3dbrew.org/wiki/3DS_System_Flaws#Hardware
https://web.archive.org/web/20240829223013/https://www.3dbrew.org/wiki/3DS_System_Flaws#Hardware
https://www.3dbrew.org/wiki/3DS_System_Flaws%5C#Hardware
https://eprint.iacr.org/2023/329
https://eprint.iacr.org/2022/959
https://eprint.iacr.org/2022/959


Partial Key Overwrite Attacks in Microcontrollers: a Survey 17

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In:
Kaliski, B.S. (ed.) Proceedings of the 17th Annual International Cryptology Con-
ference on Advances in Cryptology. CRYPTO ’97, pp. 513–525. Springer-Verlag,
Berlin, Heidelberg (1997). https://doc.lagout.org/security/Papers/DFA%
20of%20Secret%20Key%20Cryptosystems.pdf

5. Bognár, M., Magnus, C., Piessens, F., Van Bulck, J.: Intellectual Property Ex-
posure: Subverting and Securing Intellectual Property Encapsulation in Texas In-
struments Microcontrollers. In: 33rd USENIX Security Symposium (USENIX Se-
curity 24), pp. 2155–2172. USENIX Association, Philadelphia, PA (2024). https:
//www.usenix.org/conference/usenixsecurity24/presentation/bognar

6. Bognár, M., Van Bulck, J., Piessens, F.: Mind the Gap: Studying the Insecurity
of Provably Secure Embedded Trusted Execution Architectures. In: 2022 IEEE
Symposium on Security and Privacy (SP), pp. 1638–1655 (2022). https://doi.
org/10.1109/SP46214.2022.9833735. https://mici.hu/papers/bognar2022gap.
pdf

7. Bruseghini, L., Huigens, D., Paterson, K.G.: Victory by KO: Attacking OpenPGP
Using Key Overwriting. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’22, pp. 411–423. Association for
Computing Machinery, Los Angeles, CA, USA (2022). https://doi.org/10.
1145/3548606.3559363

8. Clavier, C.: Secret External Encodings Do Not Prevent Transient Fault Analysis.
In: Proceedings of the 9th International Workshop on Cryptographic Hardware
and Embedded Systems. CHES ’07, pp. 181–194. Springer-Verlag, Vienna, Austria
(2007). https://doi.org/10.1007/978-3-540-74735-2_13. https://iacr.org/
archive/ches2007/47270181/47270181.pdf

9. Domke, F.t.: Almost Secure, Archived at https : / / web . archive . org / web /

20241119012300/https://debugmo.de/2011/11/almost-secure/. (2011). https:
//debugmo.de/2011/11/almost-secure/ (visited on 11/21/2024)

10. Electronics, R.: RA6M5 Group: User’s Manual: Hardware, (2023). https://www.
renesas.com/en/document/man/ra6m5- group- users- manual- hardware?r=

1493931 (visited on 12/17/2024)
11. Electronics, R.: Renesas RA Family Application note: Renesas Security Engine Op-

erational Modes, (2024). https://www.renesas.com/en/document/apn/renesas-
security-engine-operational-modes?r=1493931 (visited on 12/17/2024)

12. GaryoderNichts, Looking into the Nintendo Alarmo, Archived at https://archive.
ph/4nhB8. (2024). https://garyodernichts.blogspot.com/2024/10/looking-
into-nintendo-alarmo.html (visited on 10/31/2024)

13. Kerins, T., Kursawe, K.: A Cautionary Note on Weak Implementations of Block Ci-
phers, (2006). PDF available at https://web.archive.org/web/20221206234645/
https://www.cosic.esat.kuleuven.be/wissec2006/papers/10.pdf.

14. Klima, V., Rosa, T.: Attack on Private Signature Keys of the OpenPGP Format,
PGP(TM) Programs and Other Applications Compatible with OpenPGP, Cryptol-
ogy ePrint Archive, Paper 2002/076 (2002). https://eprint.iacr.org/2002/076.

15. Korth, M.: GBATEK DSi AES I/O Ports, Archived at https://web.archive.

org/web/20220829222918/http://problemkaputt.de/gbatek-dsi-aes-i-o-

ports.htm. (2021). https://problemkaputt.de/gbatek-dsi-aes-i-o-ports.htm
(visited on 10/04/2022)

16. Lu, Y.: The 3DS Cryptosystem, Archived at https://web.archive.org/web/

20240625001543/https://yifan.lu/2016/04/06/the- 3ds- cryptosystem/.

https://doc.lagout.org/security/Papers/DFA%20of%20Secret%20Key%20Cryptosystems.pdf
https://doc.lagout.org/security/Papers/DFA%20of%20Secret%20Key%20Cryptosystems.pdf
https://www.usenix.org/conference/usenixsecurity24/presentation/bognar
https://www.usenix.org/conference/usenixsecurity24/presentation/bognar
https://doi.org/10.1109/SP46214.2022.9833735
https://doi.org/10.1109/SP46214.2022.9833735
https://mici.hu/papers/bognar2022gap.pdf
https://mici.hu/papers/bognar2022gap.pdf
https://doi.org/10.1145/3548606.3559363
https://doi.org/10.1145/3548606.3559363
https://doi.org/10.1007/978-3-540-74735-2_13
https://iacr.org/archive/ches2007/47270181/47270181.pdf
https://iacr.org/archive/ches2007/47270181/47270181.pdf
https://web.archive.org/web/20241119012300/https://debugmo.de/2011/11/almost-secure/
https://web.archive.org/web/20241119012300/https://debugmo.de/2011/11/almost-secure/
https://debugmo.de/2011/11/almost-secure/
https://debugmo.de/2011/11/almost-secure/
https://www.renesas.com/en/document/man/ra6m5-group-users-manual-hardware?r=1493931
https://www.renesas.com/en/document/man/ra6m5-group-users-manual-hardware?r=1493931
https://www.renesas.com/en/document/man/ra6m5-group-users-manual-hardware?r=1493931
https://www.renesas.com/en/document/apn/renesas-security-engine-operational-modes?r=1493931
https://www.renesas.com/en/document/apn/renesas-security-engine-operational-modes?r=1493931
https://archive.ph/4nhB8
https://archive.ph/4nhB8
https://garyodernichts.blogspot.com/2024/10/looking-into-nintendo-alarmo.html
https://garyodernichts.blogspot.com/2024/10/looking-into-nintendo-alarmo.html
https://web.archive.org/web/20221206234645/https://www.cosic.esat.kuleuven.be/wissec2006/papers/10.pdf
https://web.archive.org/web/20221206234645/https://www.cosic.esat.kuleuven.be/wissec2006/papers/10.pdf
https://eprint.iacr.org/2002/076
https://web.archive.org/web/20220829222918/http://problemkaputt.de/gbatek-dsi-aes-i-o-ports.htm
https://web.archive.org/web/20220829222918/http://problemkaputt.de/gbatek-dsi-aes-i-o-ports.htm
https://web.archive.org/web/20220829222918/http://problemkaputt.de/gbatek-dsi-aes-i-o-ports.htm
https://problemkaputt.de/gbatek-dsi-aes-i-o-ports.htm
https://web.archive.org/web/20240625001543/https://yifan.lu/2016/04/06/the-3ds-cryptosystem/
https://web.archive.org/web/20240625001543/https://yifan.lu/2016/04/06/the-3ds-cryptosystem/


18

(2016). https://yifan.lu/2016/04/06/the- 3ds- cryptosystem/ (visited on
09/08/2024)

17. Minerva: The curse of ECDSA nonces : Systematic analysis of lattice attacks on
noisy leakage of bit-length of ECDSA. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2020(4), 281–308 (2020). https://doi.org/10.
13154/tches.v2020.i4.281-308. https://tches.iacr.org/index.php/TCHES/
article/view/8684

18. NXP, i.MX 8M Dual/8M QuadLite/8M Quad Applications Processors Reference
Manual, Sign-in required for download. (2021). https://www.nxp.com/webapp/
Download?colCode=IMX8MDQLQRM

19. NXP, LPC55S6x/LPC55S2x/LPC552x User manual, Sign-in required for down-
load. (2021). https://www.nxp.com/webapp/Download?colCode=UM11126

20. Obermaier, J., Tatschner, S.: Shedding too much Light on a Microcontroller’s
Firmware Protection. In: 11th USENIXWorkshop on Offensive Technologies (WOOT
17). USENIX Association, Vancouver, BC (2017). https://www.usenix.org/
conference/woot17/workshop-program/presentation/obermaier

21. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance (Corresp.) IEEE Transactions on Infor-
mation Theory 24(1), 106–110 (1978). https://doi.org/10.1109/TIT.1978.
1055817. https://www-ee.stanford.edu/~hellman/publications/28.pdf

22. Rodrigues, C., Oliveira, D., Pinto, S.: BUSted!!! Microarchitectural Side-Channel
Attacks on the MCU Bus Interconnect. In: 2024 IEEE Symposium on Security and
Privacy (SP) (2024). https://bustedattack.com/resources/BUSted.pdf

23. Schink, M., Obermaier, J.: Taking a look into execute-only memory. In: Proceed-
ings of the 13th USENIX Conference on Offensive Technologies. WOOT’19, p. 1.
USENIX Association, Santa Clara, CA, USA (2019). https://www.usenix.org/
system/files/woot19-paper_schink.pdf

24. SciresM, hexkyz, Je Ne Sais Quoi - Falcons over the Horizon, Archived at https:
//archive.is/wNT42. (2021). https://hexkyz.blogspot.com/2021/11/je-ne-
sais-quoi-falcons-over-horizon.html (visited on 12/06/2024)

25. plutoo derrek smea , s.: Console Hacking: Breaking the 3DS, (2015). https://
media.ccc.de/v/32c3-7240-console_hacking (visited on 12/16/2024)

26. STMicroelectronics, RM0440 Reference manual: STM32G4 series advanced Arm-
based 32-bit MCUs, (2024). https://www.st.com/resource/en/reference_
manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.

pdf (visited on 12/08/2024)
27. STMicroelectronics, RM0456 Reference manual: STM32U5 Series Arm-based 32-

bit MCUs, (2023). https://www.st.com/resource/en/reference_manual/
rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf (vis-
ited on 11/18/2024)

28. Swierczynski, P., Fyrbiak, M., Koppe, P., Paar, C.: FPGA Trojans Through Detect-
ing and Weakening of Cryptographic Primitives. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 34(8), 1236–1249 (2015). https:
//doi.org/10.1109/TCAD.2015.2399455

29. SwitchBrew, Switch System Flaws, Archived at https : / / web . archive . org /

web/20240826033554/https://switchbrew.org/wiki/Switch_System_Flaws#

Hardware. https://switchbrew.org/wiki/Switch_System_Flaws%5C#Hardware
(visited on 09/08/2024)

30. Tan, S.J., Bratus, S., Goodspeed, T.: Interrupt-Oriented Bugdoor Programming:
A Minimalist Approach to Bugdooring Embedded Systems Firmware. In: Proceed-

https://yifan.lu/2016/04/06/the-3ds-cryptosystem/
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://www.nxp.com/webapp/Download?colCode=IMX8MDQLQRM
https://www.nxp.com/webapp/Download?colCode=IMX8MDQLQRM
https://www.nxp.com/webapp/Download?colCode=UM11126
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://www.usenix.org/conference/woot17/workshop-program/presentation/obermaier
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/TIT.1978.1055817
https://www-ee.stanford.edu/~hellman/publications/28.pdf
https://bustedattack.com/resources/BUSted.pdf
https://www.usenix.org/system/files/woot19-paper_schink.pdf
https://www.usenix.org/system/files/woot19-paper_schink.pdf
https://archive.is/wNT42
https://archive.is/wNT42
https://hexkyz.blogspot.com/2021/11/je-ne-sais-quoi-falcons-over-horizon.html
https://hexkyz.blogspot.com/2021/11/je-ne-sais-quoi-falcons-over-horizon.html
https://media.ccc.de/v/32c3-7240-console_hacking
https://media.ccc.de/v/32c3-7240-console_hacking
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://doi.org/10.1109/TCAD.2015.2399455
https://doi.org/10.1109/TCAD.2015.2399455
https://web.archive.org/web/20240826033554/https://switchbrew.org/wiki/Switch_System_Flaws#Hardware
https://web.archive.org/web/20240826033554/https://switchbrew.org/wiki/Switch_System_Flaws#Hardware
https://web.archive.org/web/20240826033554/https://switchbrew.org/wiki/Switch_System_Flaws#Hardware
https://switchbrew.org/wiki/Switch_System_Flaws%5C#Hardware


Partial Key Overwrite Attacks in Microcontrollers: a Survey 19

ings of the 30th Annual Computer Security Applications Conference. ACSAC ’14,
pp. 116–125. Association for Computing Machinery, New Orleans, Louisiana, USA
(2014). https://doi.org/10.1145/2664243.2664268

31. Texas Instruments, MSP432E4 SimpleLink Microcontrollers Technical Reference
Manual, (2018). https://www.ti.com/lit/ug/slau723a/slau723a.pdf (visited
on 12/08/2024)

32. Texas Instruments, MSPM0 L-Series 32MHz Microcontrollers Technical Reference
Manual, (2024). https://www.ti.com/lit/pdf/slau847 (visited on 11/18/2024)

33. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000).
https://doi.org/10.1109/12.869328. https://marcjoye.github.io/papers/
YJ00chkb.pdf

34. Yuce, B., Schaumont, P., Witteman, M.F.: Fault Attacks on Secure Embedded
Software: Threats, Design, and Evaluation. Journal of Hardware and Systems Se-
curity 2, 111–130 (2018). https://arxiv.org/pdf/2003.10513

https://doi.org/10.1145/2664243.2664268
https://www.ti.com/lit/ug/slau723a/slau723a.pdf
https://www.ti.com/lit/pdf/slau847
https://doi.org/10.1109/12.869328
https://marcjoye.github.io/papers/YJ00chkb.pdf
https://marcjoye.github.io/papers/YJ00chkb.pdf
https://arxiv.org/pdf/2003.10513

	Partial Key Overwrite Attacks in Microcontrollers: a Survey

