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Abstract. Side-channel attacks following a classical differential power
analysis (DPA) style are well understood, along with the effect the mask-
ing countermeasure has on them. However, simple attacks (SPA) where
the target variable does not vary thanks to a known value, such as the
plaintext, are less studied. In this paper, we investigate how the masking
countermeasure affects the success rate of simple attacks. To this end, we
provide theoretical, simulated, and practical experiments. Interestingly,
we will see that masking can allow us to asymptotically recover more
information on the secret than in the case of an unprotected implemen-
tation, depending on the masking type. We will see that this is true for
masking encodings that add non-linearity with respect to the leakages,
such as arithmetic masking, while it is not for Boolean masking. We be-
lieve this context provides interesting results, as the average information
of arithmetic encoding is proven less informative than the Boolean one.

Keywords: SPA, masking, success rate.

1 Introduction

As opposed to classical cryptography, where an adversary has only access to the
inputs and outputs of a primitive viewed as a black box, Side-Channel Attacks
(SCAs) use additional information. This information comes from the physical
implementation of a mathematical algorithm, and is referred to as leakage. This
includes as an example the timing information [13], the power consumption [14],
or the electromagnetic radiations [10]. This study concerns the last two types
of leakages, where the adversary collects the corresponding information for each
execution of a primitive, denoted as a power/electromagnetic trace.

Independently of the type of leakage used, SCAs can be divided into two
categories: differential or simple. The former one, denoted as DPA, corresponds
to the most usual case, where an adversary targets a sensitive variable that both
depends on the secret and a known value. This can be the case when targeting
the output of the AES Sbox for instance. Each trace comes from an AES exe-
cution, where the known plaintext is varying. Note that the “differential” term
of DPA here refer to the dependency to a known varying variable, and not to
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Kocher’s DPA [14]. The second type of attack, denoted as SPA, corresponds to
the case where the target variable does not depend on any known varying value.
This can happen for example when targeting the key scheduling of the AES [27],
the key processing in Ascon [8], some Kyber [1] variables such as the output of
the binomial sampler or a bus data transfer. The adversary can measure sev-
eral executions of the algorithm, but the leakages will not include any variation
regarding a known value. The existence or the lack of such dependency with a
known value has a significant impact on these two types of attacks. For DPA,
the use of an approximate leakage model can still allow to recover the secret,
thanks to this dependency along with (e.g.) the non-linearity of the Sbox [20].
However, in the SPA context, the inaccuracy of the leakage model might have a
significantly more negative impact. We further provide more description of the
two attack scenarios in Section 2.6.

To protect against SCAs, independently of their nature, masking is a com-
monly used countermeasure [12]. It consists of splitting any sensitive value into
independent shares using randomness, such that the combination of all shares
is equal to the original sensitive value. For instance, the combination can be an
addition over F2k , such as Boolean masking [23], or an addition over Zp, as for
arithmetic masking [18]. From a security perspective, the required number of
traces to break an implementation increases exponentially with the number of
shares, with respect to the noise level.

In this paper, we study the context of profiled SPAs against unprotected and
2-share masked (Boolean and arithmetic) implementations. For these different
types of protection, we focus on the asymptotic success rates, denoting the prob-
ability of recovering a secret given an infinite number of attack traces. For a DPA,
the asymptotic success rate is usually one even with a mediocre leakage model.
This is true independently of the protection technique, as long as the attack order
matches the masking level [15] and that the target variable has non-linearity such
as an Sbox output. However, for SPA, we show that the asymptotic success rate
can be lower, even assuming an infinite number of attack traces. Moreover, We
further study the context of an imperfect profiling and its effect on the success
rate, as real profiled attacks can never perfectly estimate the model. We believe
that the specific context of SPA in combination with masking and asymptotic
success rate is not well studied and can lead to counter-intuitive observations.
More specifically, the contributions of this paper can be summarized as follows:

– First, we study the (unrealistic) context where the actual leakage function
is known to the adversary, for both Hamming weight and bijective leakages.
We show that arithmetic masking can help reaching a higher success rate
than an unprotected implementation.

– Second, we study the more realistic context where an adversary approximates
the leakage function through a profiling phase. This introduces incorrect
profiling, where some classes can never be recovered. We show that this has
more impact on non-linear encoding of arithmetic masking, even if it can
reach higher success rates. Surprisingly, we also put in evidence cases where
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the asymptotic success rate is higher for an implementation with Boolean
masking than for an unprotected one, for a similar profiling strength.

– Finally, we validate the theoretical and simulated results using actual mea-
surements.

The rest of the paper is organized as follows. First, Section 2 introduces
the notions and background that are necessary for the rest of the paper, along
with our simulated experimental setup. Second, Section 3 studies the unrealistic
context where the adversary has perfect knowledge of the leakage function. Then,
Section 4 shows what happens in a more realistic context, where an attacker can
only estimate the actual leakage function through an actual profiling phase.
Finally, Section 5 confirms the previous results using real leakages.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We denote by Pr [x] the probability a random variable X is equal to x. We denote
the conditional probability of a random variable A given B with Pr [A|B]. We
use a sans serif font for functions (e.g., F) and calligraphic fonts for sets (e.g.,
A). Var denotes the variance, and HW denotes the Hamming weight function.
We use bold notation for vectors (e.g. v).

2.2 Leakage model

Let X denote some n-bit variable processed at a given time. In the rest of this pa-
per, we will assume an additive Gaussian noise [25, 22] such that L(X) = F(X)+
N (0, σ2

noise). F denotes the deterministic part of the leakage, and N (0, σ2
noise)

denotes the Gaussian noise with variance σ2
noise. F can be generalized by the

following linear polynomial [24] :

F(x) = a+

n−1∑
i=0

aixi (1)

where xi denotes the i-th bit of x. In the following, we will ignore the constant
a without loss of generality. We will also study the common Hamming Weight
leakage (HW) case where ∀ i, j ∈ [0, n− 1], ai = aj .

2.3 Signal to Noise Ratio

The Signal-to-Noise Ratio [16] (SNR) is a commonly used information theory
metric to measure the informativeness of the leakages. It is defined as the variance
of F, representing the signal, divided by the noise level. Reusing the assumptions
of the previous subsection, it can be computed as follows for a variable X:

SNR =
VarX(F(X))

σ2
noise

(2)
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2.4 Success Rate

The success rate is a security evaluation metric that is directly related to the
number of traces necessary to mount an attack [25]. That is, the success rate
is defined as the probability that the actual secret is completely recovered after
the attack. If we define by 1V the random variable that outputs 1 if we guess
the sensitive n-bit variable V properly for a given attack and 0 elsewise, we can
define the success rate SR as:

SR = Pr [1V = 1] =
1

2n

2n−1∑
v=0

Pr [1V = 1|V = v] (3)

Assuming that V has a uniform distribution. In our experiments, we will compute
Pr [1V = 1|V = v] empirically by repeating an attack several times.

2.5 Masking

In this study, we will investigate the effect of the masking countermeasure in the
context of SPA. Masking is a commonly used countermeasure to protect against
side-channel attacks. The idea is to split any sensitive variable x into d shares
si, i ∈ [0, d − 1], such that the knowledge of any d − 1 shares does not give
information on x. The corresponding circuit has to be modified into a masked
circuit that computes over the shares instead of the original values, while still
producing the correct result. There exist many masking types in the literature.
In this study, we focus on Boolean and arithmetic ones.

Boolean masking : this is the first masking proposal [12], and probably the
most popular one in symmetric cryptography, such as the AES or hash functions.
The d shares si are computed such that x =

⊕d−1
0 si, the addition being over

F2k .

Arithmetic masking: instead of having x as an element of a field of charac-
teristic two, arithmetic masking [18] is typically used when x belongs to a ring
of modular integers, not necessarily modulo a prime number. In this case, the d
shares si are computed such that x =

∑d−1
i=0 si mod p.

Security : the probing model [12] formalizes the security brought by the masking
countermeasure. It ensures that the knowledge of any d−1 shares is independent
of the original sensitive variable x. Upon a carefully masked implementation, the
number of traces to recover a sensitive variable can grow exponentially with the
number of shares, given enough noise [9].

2.6 Attack type

Independently from the fact that an attack is profiled or not, one can split
the context of the attack into two cases based on whether the target sensitive
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variable changes over the different runs of the algorithm, thanks to a varying
known value.

DPA-like scenario: in this paper, we denote by DPA-like (or simply DPA)
any side-channel attack that targets some intermediate variable V using several
traces such that V = G(K,M), where G denotes some function, K represents a
fixed secret variable to recover and M a known varying variable over different
observations. For instance, attacking the Sbox output of the AES falls into this
category if the plaintext is known and varies over several trace acquisitions. Note
that the scenario is independent of the attack method. Indeed, (e.g.) Kocher’s
DPA [14], CPA [4], MIA [11], template [7], Machine Learning [5] (and so on) all
fall within the DPA scenario in this case.

SPA scenario : As opposed to the DPA scenario defined above, in the SPA
scenario, there is no dependency with a known varying value. An attack falls
into this category if it targets some intermediate variable that only depends on
the secret and potentially unknown varying values (e.g. randomness). Note that
no assumption is made on the number of traces used for the attack. Attacking
for example the key schedule of the AES, potentially using several observation
traces, falls into this category as there is no variation at all. On the other hand,
attacking the output of the AES Sbox with a single trace only or a fixed plaintext
would also fall into this category. As for the DPA scenario, the category does
not depend on the attack method.

Main differences and asymptotic success rate : This study will focus on
the success rate of DPAs and SPAs when an infinite number of attack traces are
used, which we refer to as asymptotic success rate and denote SR∞ .

In this context, the DPA scenario is well understood in the literature [25,
26]. The number of traces required to break an implementation depends on

1
SNRo where o is the masking order (o = 1 for unprotected), when the SNR
is low enough. An attack would eventually succeed given enough attack traces,
assuming that the leakage model is close enough to the real one.

This is however quite different for SPAs. The secret might not be recovered
even using an infinite number of attack traces, which can happen for several
reasons. Assuming a non-bijective leakage function (e.g. HW), some hypotheses
cannot be distinguished. Moreover, if the model is not perfect, a candidate might
always be misclassified.

The asymptotic SR difference between DPA and SPA is due to the existence
of the known varying input in the DPA context. In case of a wrong model or a
non-bijective leakage function, the help of the other classes and the (hopefully)
non-linearity of the function G(K,M) (e.g. an Sbox) will still help the attack to
eventually succeed (assuming the model is not drastically far off the actual one).

In this study, we are interested in the impact of masking on the asymptotic
success rate of an SPA. Up to our knowledge, this setting exhibits interesting ob-
servations which have not been shown before. The main intuition is that masking
a fixed variable will introduce (unknown) variability, where there would be none
in the unprotected SPA context. An example could be a masked implementation
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of the AES key schedule. We aim to study whether this added variability due
to masking can improve the asymptotic complexity of a SPA, as opposed to an
unmasked version of the algorithm. To answer this question, in the rest of this
paper, we will compare the SPA results of an unmasked variable as opposed to its
masked version. We will do so by considering two types of masking: Boolean and
arithmetic. First, using a simulated setting, we will assume a perfect knowledge
of the leakage function for the attacker, using both Hamming weight and a (more
realistic) bijective linear leakage. Then, still using simulations, we will move to
the more practical case where the actual leakages are not perfectly character-
ized. Finally, we will provide actual experiments to support our theoretical and
simulated claims. From these settings, we will show that the question can be an-
swered positively, showing that masking can increase SR∞ of a SPA, especially
for arithmetic masking.

Note that even if the asymptotic success rate of an attack can be improved
thanks to masking, the main security property of the countermeasure still holds.
That is, the required number of traces increases exponentially with the security
order o [2]. However, this has no impact on this study as we are only interested
in the asymptotic success rate given an infinite number of attack traces.

2.7 Simulation setup

To exhibit the properties of SPAs, Sections 3 and 4 will use the following sim-
ulated setting. We simulated leakages for four types of attacks: SPAs against
unprotected, Boolean masking, arithmetic masking and finally a DPA against
an unprotected implementation, used as a benchmark. All success rate calcula-
tions are done using 1000 repetitions. To speed up the computations, we targeted
4-bit values.To simulate the linear leakages introduced in Section 2.2, we ran-
domly sampled each four coefficients ai from a Normal distribution N (1, σ2

leakage)

for each repetition of the experiment. The higher σ2
leakage is, the further from

Hamming weight is the leakage function, as defined in 2.2, where a σ2
leakage = 0

indicates an exact Hamming weight model. This allow us to control how far the
leakage are from HW, and will use a value σ2

leakage = 10−4 in simulation as it will
match its values obtained with real traces. The noise level σ2

noise of the leakages
is then set accordingly to match the desired SNR level.

Intermediate values: for the DPA, we used the S-Box S of the Present cipher
[3] and computed the intermediate value v = S(s ⊕ p) for random plaintext p.
The adversary is provided with the noisy leakage of v. For the unprotected SPA,
we directly leak the noisy leakage of the sensitive variable. For the SPA against
masked implementation, we leak two samples, one for each share.

Profiling: except for Section 3 where we assume an adversary with perfect
knowledge of the leakage function, we perform Gaussian template profiling. For
each leakage sample (two in the case of masking), the adversary is provided with
Np leakages per value of the 4-bit variable, accounting for a total of Np × 24

traces for a 4-bit value. Note that this assumes a scenario where the adversary
has access to the masking randomness for the profiling.
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Attack: using the profiled or known model, we use a maximum likelihood ap-
proach for the attacker, which computes Pr [l|k] =

∏Na

i=1 Pr [li|k] using Na attack
traces. In case of masking, we compute Pr [li|k] =

∑
sj
Pr [li|k, sj ]Pr [sj ] where

sj denotes the randomness guess used for the sharing. The masking randomness
is not known during the attack phase. We emphasize that the conclusions of this
study are independent of the distinguisher, and that similar results would be
obtained with any profiled attack.

3 Perfect profiling

In this section, we first study the (unrealistic) case where the adversary has
perfect knowledge of the leakage function. More formally, during the attack, we
assume the adversary knows exactly the deterministic part F of the leakages
as introduced in Section 2.2. First, we will see the implication for a Hamming
weight leakage function, before assuming more general linear leakages. For both
cases, we study what SR∞ can be achieved with and without the presence of
masking in the context of SPA.

3.1 Hamming weight leakages

Assuming an adversary with the knowledge of F = HW, we are interested in
evaluating SR∞ for an unprotected, Boolean, and arithmetically masked value.
We assume the attacker targets a uniformly distributed n-bit value v. We first
show how the SR∞ can be theoretically derived, before validating it using our
simulated setting.

Unprotected: without masking countermeasure, the adversary directly ob-
serves HW(v)+N (0, σ2

noise). In the perfect profiling setting, as we are interested
with the asymptotic success rate, we can theoretically compute SR∞ from Equa-
tion 3 assuming noiseless leakages, where V denotes the n-bit sensitive variable:

SR∞ =
1

2n

2n−1∑
v=0

Pr [1V = 1|V = v]

=
1

2n

2n−1∑
v=0

n∑
l=0

Pr [1V = 1|V = v,HW(v) = l]Pr [HW(v) = l]

=
1

2n

2n−1∑
v=0

n∑
l=0

1(
n
l

) (nl)
2n

=
1

2n

2n−1∑
v=0

n+ 1

2n
=

n+ 1

2n

(4)

Using n = 4 as an example, we would get SR∞ = 0.3125. This success rate
is computed assuming a uniformly distributed value v. Indeed, some values of v
(e.g. v = 0 and v = 15) would be asymptotically recovered, while values such
that HW(v) = 1 would not.
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Boolean masking: we now assume v is protected with 2-share Boolean masking.
The adversary observes leakages on the shares sv0 and sv1 such that v = sv0 ⊕ sv1,
which vary for each execution. That is, she is provided with l0 = HW(sv0) +
N (0, σ2

noise) and l1 = HW(sv1) +N (0, σ2
noise). In this case, we can show that the

asymptotic success rate is the same as for the unprotected case, which is derived
from Proposition 1. The proof is provided in Appendix A.

Proposition 1. Two unprotected values v0 and v1 have the same Hamming
weight if, and only if, the two joint distributions of the Hamming weight of their
shares are the same.

Proposition 1 shows that, for noiseless Hamming weight leakages, the success
rate for unprotected and Boolean masking are equivalent. The proof is finalized
with Proposition 2.

Proposition 2. The asymptotic success rate (Na = inf) of an attack with noise-
less leakage given by a deterministic function F is the same as an attack with
noisy leakages F+B, where B denote the additive noise.

In our context, if proposition 2 was false, then there would exist at least
one secret value v such that its Hamming weight would not be recovered when
adding noise to the leakages, while it would recovered with noiseless leakages.
This cannot be in our asymptotic Na setting, as masking can only increase the
number of traces required to recover the secret, but not provide unconditional
security. That is, adding noise will have no impact on the asymptotic success rate.
As a result, in the context of Boolean masking, the SR∞ is the same as for the
unprotected version. Thus, the variability introduced by Boolean masking does
not help nor hinder the attacker. A concrete example of this phenomenon is given
in Table 1 for a 2-bit value v. The first column represents the value v written
in binary, along with the corresponding Hamming weights. The remaining i
columns correspond to all the possible sharings of v, also with their corresponding
Hamming weights. We can see that for both v = 01 and v = 10 (HW = 1), the
corresponding possible Hamming weights of their shares are also equals up to a
permutation. An attacker would thus not be able to distinguish these two values
by observing their shared versions. However, this is not the case for v = 00 and
v = 11, which have unique Hamming weights for their shared versions. These two
values would thus be eventually recovered. We further note that this generalizes
to any number of shares, and that the proof is independent of the bit size of the
variable.

v sharing 1 sharing 2 sharing 3 sharing 4
(00): HW=0 (00,00): HW=(0,0) (01,01): HW=(1,1) (10,10): HW=(1,1) (11,11): HW=(2,2)
(01): HW=1 (00,01): HW=(0,1) (01,00): HW=(1,0) (10,11): HW=(1,2) (11,10): HW=(2,1)
(10): HW=1 (00,10): HW=(0,1) (01,11): HW=(1,2) (10,00): HW=(1,0) (11,01): HW=(2,1)
(11): HW=2 (00,11): HW=(0,2) (01,10): HW=(1,1) (10,01): HW=(1,1) (11,00): HW=(2,0)

Table 1: Boolean sharings of a 2-bit value v, with their Hamming weight leakages.
The first column corresponds to v, and the others show the possible sharings.
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Arithmetic masking : we now move to the context of a 2-share arithmetic
masking, where the n bits sensitive value v is masked using v = sv0 + sv1 mod 2n,
vi being the shares. Again, the adversary is provided with two leakages li equal
to the noisy Hamming weights of both shares and uses the actual model F = HW
for the attack.

As opposed to Boolean masking, where the XOR is solely performed bitwise,
the addition adds some non-linearity due to the propagation of the carry. Thanks
to this property, if two unprotected values v0 and v1 have the same Hamming
weight, the sets of the Hamming weight of their shares might differ. For this
reason, the SR∞ will be higher than the unprotected/Boolean masked versions.
We illustrate this in Table 2, which shows again the possible arithmetic sharing
of a 2-bit value v and their Hamming weights. As for Table 1, the first column
represents the value v, and the remaining 4 columns correspond to a possible
sharing of v. As opposed to Boolean masking, we can see that there is no sharing
equal to another (in terms of Hamming weights) up to any permutation. In that
case, all values of v could be recovered, meaning SR∞ = 1. Note that using more
than 2-bit variables would provide different results for arithmetic masking, as
some sharing could still share equalities, which we will show below.

v sharing 1 sharing 2 sharing 3 sharing 4
(00): HW=0 (00,00): HW=(0,0) (01,11): HW=(1,2) (10,10): HW=(1,1) (11,01): HW=(2,1)
(01): HW=1 (00,01): HW=(0,1) (01,00): HW=(1,0) (10,11): HW=(1,2) (11,10): HW=(2,1)
(10): HW=1 (00,10): HW=(0,1) (01,01): HW=(1,1) (10,00): HW=(1,0) (11,11): HW=(2,2)
(11): HW=2 (00,11): HW=(0,2) (01,10): HW=(1,1) (10,01): HW=(1,1) (11,00): HW=(2,0)

Table 2: Arithmetic sharings of a 2-bit value v, with their Hamming weight
leakages. The first column corresponds to v, and the others show the possible
sharings.

SR∞ for arithmetic is less trivial to derive using formulas as opposed to
the unprotected or Boolean masking cases. Yet, it can be calculated in practice
by computing the number of sets of shares having the same Hamming weight
values up to a permutation for different sensitive values, as in Table 2. The
corresponding results are shown in Figure 1, where the SR∞ in the Y-axis is
given as a function of the bit size n in the X-axis. The blue (resp. green) curve
corresponds to the unprotected/Boolean (resp. arithmetic) case.

We can see that the SR∞ is much higher for arithmetic masking than for the
unprotected case. In the latter, the asymptotic success rate decreases exponen-
tially with the bit size of the variable. However, for arithmetic masking, SR∞ is
closer to a linear slope. From these observations, we can see that in the con-
text of Hamming weight leakages (perfectly known to the adversary), arithmetic
masking allows a SPA adversary to recover values that would otherwise not be
recovered. However, the main property of masking still holds regarding the con-
vergence rate. That is, reaching SR∞ would be linear in the number of traces
for the unprotected case, while it would be quadratic in the 2-share arithmetic
one.
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Note that while this study only focuses on 2-share versions of masking, we
also computed SR∞ for arithmetic masking for up to 8-bit values for a 3-share
arithmetic masking. In this case, we still had SR∞ equal to one for arithmetic
masking. That is, adding more shares allows us to reach a higher asymptotic
success rate for arithmetic masking.

2 4 6 8 10 12
n bits

10 2

10 1

100

M
ax
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uc
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ss

 ra
te

unprotected / boolean
arithmetic

Fig. 1: Maximum success rate (Y-axis) as a function of the bit size n (X-axis)
for Hamming weight leakage model, perfectly known to the adversary. The blue
curve corresponds to the unprotected/Boolean masked cases. The green curve
corresponds to arithmetic masking.

simulations : to validate the theoretical SR∞ values derived above, we validate
them using our simulated setting described in Section 3.2. As we assume perfect
profiling, the actual probability density function (PDF), equal to a noisy Ham-
ming weight function, is given to the adversary. For all cases, we ran experiments
for 3 different SNRs levels equal to 0.1, 1, and 10, for 4-bit variables.

The results are shown in Figure 2, which shows the success rate (Y-axis)
as a function of the number of attack traces (X-axis). All curves are computed
using 2000 repetitions. The red curves correspond to the success rate of DPA
against an unprotected variable as a benchmark. The other colors represent the
implementation type (unprotected, Boolean, arithmetic), and the curve type
represents the SNR. A plain line is a for a SNR of 10, dashes for SNR of 1,
and dots for SNR of 0.1. As a first observation, we can see that the unprotected
and the Boolean masked versions indeed do reach the same SR∞ value, slightly
above 0.3 which validates what was theoretically shown before. On the other side,
we reach SR∞ slightly above 0.8 for arithmetic masking, which again validates
what was previously computed. We can also observe that reducing the SNR
does not impact SR∞ , but only the required number of attack traces to reach
convergence, which is expected. Yet, we can see that for the unprotected version,
there is a linear relationship between the required number of traces and the SNR,
while there is one order of magnitude in the case of masking. This is due to the
exponential benefit of masking [2], which is independent of the SR∞ bound.
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Finally, we can observe that while arithmetic has a higher SR∞ than Boolean,
it takes more attack traces to reach this convergence. This is because the mutual
information is lower for a 2-share arithmetic masking than for a Boolean one.
This was previously observed in [17], which means that a single trace observation
is on average less informative for arithmetic masking, which explains why more
are needed to reach convergence. This also shows that mutual information is not
the right tool to study the asymptotic success rate.
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# Attack traces
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100
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unprotected, SNR:10
unprotected, SNR:1
unprotected, SNR:0.1
boolean, SNR:10
boolean, SNR:1
boolean, SNR:0.1
arithmetic, SNR:10
arithmetic, SNR:1
arithmetic, SNR:0.1
dpa, SNR:10
dpa, SNR:1
dpa, SNR:0.1

Fig. 2: Success rate (Y-axis) as a function of the number of attack traces (X-axis)
for all 3 implementation types, computed with 2000 repetitions for perfectly
known Hamming weight leakage. The curve color represents the implementation
type (unprotected, Boolean, arithmetic, DPA), and the curve type represents
the SNR. A plain line is a for a SNR of 10, dashes for SNR of 1, and dots for
SNR of 0.1.

3.2 General linear leakages

The previous subsection assumed Hamming weight leakages. As this model is
not bijective, it prevents SPA from reaching an asymptotic success rate of one.
However, actual leakages are rarely linearly equivalent to the Hamming weight
function, but rather close to it. That is, they would rather follow the general
linear model given by Equation 1 in Section 2.2 with fairly close coefficients ai.
As a result, the actual leakage function is bijective and more or less close to the
Hamming weight one. In this subsection, we study how this affects the success
rate of a SPA, where the leakage function is still known to the adversary (perfect
profiling).

Convergence of the success rate : as we now assume a bijective leakage func-
tion G known to the adversary, we will have SR∞ = 1. However, the convergence
speed to reach SR∞ will highly depend on G. More precisely, following the leak-
age model of 2.2, the convergence speed will be impacted by σ2

leakage as defined
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in . On one hand, if σ2
leakage ≪ σ2

noise, then G will be hard to distinguish from
a Hamming weight function. However, if σ2

leakage is larger, the bijectivity will
be easier to capture. This is illustrated in Figure 3, which represents the PDFs
of a 3-bit variable leaking with the linear model. The dashed curve shows the
Gaussian mixture, which represents what an adversary sees using attack traces.
We arbitrarily chose the linear coefficients to illustrate this property, without
loss of generality. The right part of the figure, denoted as high noise, shows the
case where σ2

leakage = 0.014 ≪ σ2
noise = 0.0016. On the opposite, the left shows

the case with σ2
leakage = 0.014 and σ2

noise = 0.0324, denoted as low noise. For
the low noise case on the left, we can see that observing the mixture still allows
visually differentiating between the 8 possible classes, leading to a quick conver-
gence to SR∞ . However, this is not the case for the high noise scenario, where
observing the mixture would allow quickly differentiating the Hamming weight,
but would struggle to distinguish the exact value of the Hamming weight equals
1 or 2. This would translates in a slower convergence to SR∞ .
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Fig. 3: Example of conditional PDFs (grey) and PDF mixture (black, dashed)
for the bijective model in a low noise scenario (left) and in a high noise scenario
(right). The values have been chosen to emphasize these differences.

Simulations : we used our simulated setting to validate the previous obser-
vation on the convergence for the different versions (unprotected, Boolean, and
arithmetic masking, as well as unprotected DPA). We simulated the determinis-
tic linear leakage function G using σ2

leakage = 0.0001, as described in Section 3.2.
The results are shown in Figure 4. It shows the success rate (Y-axis) for differ-
ent numbers of attack traces (X-axis). The red curve represents the unprotected
DPA as a benchmark, and the other colors represent an implementation type,
while the type of the curve represents a different SNR level.

As a first observation, we can now see that SR∞ is not bounded anymore as
it is for the Hamming weight case. While we do not reach a high enough number
of attack traces for lower SNR values, all attacks would eventually reach a suc-
cess rate of one. Second, and most importantly, we can see that each SPA curve
is composed of two parts with different slopes. Each implementation quickly
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reaches its Hamming weight SR∞ (≈ 0.3 for unprotected/Boolean, and ≈ 0.8
for arithmetic). Then, the convergence rate decreases as the attack needs to
distinguish the classes within the Hamming weights, which illustrates the con-
vergence issue mentioned above. This is due to the information within a given
Hamming weight class being inferior to the one between the different Hamming
weights. Indeed, the second slope of the curve is equivalent to attacking with a
new SNR, where the signal now depends on σ2

leakage, which is much smaller for
a same noise. The DPA does not suffer from this issue thanks to the dependency
with a known varying value and the Sbox non-linearity.

Finally, we can see that this close-to-Hamming weight setting largely benefits
arithmetic masking, which reaches high success rates more easily than for the
unprotected case. An attacker would more easily attack an implementation with
arithmetic masking than an unprotected one in this setting. However, for a
sufficiently low SNR, this would reverse due to the masking security property.
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Fig. 4: Success rate (Y-axis) as a function of the number of attack traces (X-axis)
for all 3 implementation types, computed with 2000 repetitions for perfectly
known linear leakage. The curve color represents the implementation type (un-
protected, Boolean, arithmetic, DPA), and the curve type represents the SNR.
A plain line is a for a SNR of 10, dots for SNR of 1, and dashes for SNR of 0.1.

4 Imperfect profiling

The previous section studied the ideal case of perfect profiling, where the PDF
of the leakages is given to the adversary. We now look at the more realistic case
where the attacker aims at approximating the PDF through a profiling phase.
She will use a set of Np profiling traces per class, and estimate a model F̂ , with

F̂
Np→∞−−−−−→ F. In this section, we study the impact of imperfect profiling in the

context of SPA, comparing an unprotected secret to a masked one. As for the
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previous section, we first look at the particular case of non bijective Hamming
weight leakages, before moving to the linear ones.

4.1 Incorrect profiling

We denote by PrF̂ [l|v] the probability of observing a leakage l for a value v using
the estimated model. If the profiling has not converged enough, we might have
consistent misclassifications. That is, when the actual value computed is v, we
will have

∏
i PrF̂ [li|v] <

∏
i PrF̂ [li|v

′] as soon as enough attack traces li are used,
for some other value v′. In this case, v will never be recovered even with an infinite
number of attack traces in a SPA context. As a result, SR∞ would not reach
one, even if the leakage function is bijective. We further refer to this as incorrect
profiling, being stronger case of imperfect profiling. This is illustrated in Figure 5,
where the left (resp. right) part of the figure shows an imperfect (resp. incorrect)
profiling. The two figures show the actual PDF of some theoretical leakages in
black, which can take three values with means µi, i ∈ [0, 2]. The colored µ̂i

correspond to the means calculated through profiling, i.e. the estimated model
F̂ . In the imperfect profiling on the left, we always have |µ̂i − µi| < |µ̂i − µj |
for i ̸= j. In this case, all values would eventually be correctly classified given
an infinite number of observations. However, for the incorrect profiling on the
right, there are two means (shown in red) such that ∃j ̸= i, |µ̂i −µj | < |µ̂i −µi|.
This is the case for µ̂0 being close to µ1 than µ0. In this case, the corresponding
value would eventually be classified, and the SR∞ bound would not be reached.
The rest of this section will show how incorrect profiling impacts SPA for both
Hamming weight and linear leakages.

Fig. 5: Illustration of imperfect profiling (left) and incorrect profiling (right).

4.2 Hamming weight leakages

We first study the particular case where F = HW. From Section 3, we know that
when F is known to the attacker, SR∞ will reach a given SPA bound depending
on the masking used. We now look at the impact of incorrect profiling in this
context.

Simulations : we use our simulated setting of Section 3.2 on all implementation
types, for different SNR values. To visualize the effect of imperfect profiling on
SR∞ , we ran experiments where we varied the number of traces (per identity
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class, see Section 3.2) used during the profiling phase. The results are shown
in Figure 6, which shows the success rate (Y-axis) as a function of the number
of attack traces (X-axis). The red curves represent the unprotected DPA as a
benchmark, and the other colors represent an implementation type. The type
of the curve (plain, dash, and dots) represents the strength of the profiling,
measured as the number of profiling traces used. We used arbitrarily chosen
values of Np for both SNRs to illustrate the effect of an imperfect modeling.
The plain curves represent the perfect profiling. The left (resp. right) part of the
figure is for a SNR of 1 (resp. 0.1).

As a first observation, we can see that for the SPAs and all implementation
types, SR∞ does depend on the quality of the profiling. However, this is not
the case for the DPA, which still reaches complete recovery even with a poor
modeling. This exhibits the issue of incorrect profiling for SPA. However, we also
notice that for SPA, the convergence speed does not depend on Np. This is not
the case for the DPA, which compensates for the incorrect profiling when using
sufficient attack traces.

Second, we can see that in the case of a SNR of one, SR∞ is higher for
arithmetic masking with a poor profiling (Np = 5) than the upper bound for the
unprotected and Boolean cases. This means that given an unbounded number
of attack traces, recovering the secrets with a SPA in case of arithmetic mask-
ing would be much easier than for an unprotected implementation, even if the
profiling does not match well the attack traces (e.g. due to model transferability
issues [6]). However, we can see that this advantage lessens when moving to a
lower SNR of 0.1. Indeed, For Np = 20, the success rate is about the same for
arithmetic masking as for the unprotected case. Thus, for a low enough SNR
and bad enough profiling, the non-linearity brought by arithmetic masking does
not compensate for the information loss, as arithmetic masking is less informa-
tive [17].
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Fig. 6: Success rate (Y-axis) as a function of the number of attack traces (X-axis)
for Hamming weight leakages and imperfect profiling. The color of a curve repre-
sent an implementation type, and the type of the curve (plain, dash) represents
the strength of the profiling. The left (resp. right) part of the figure is for a SNR
of 1 (resp. 0.1).
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To provide a different view on the effect of the imperfect profiling, we additionally
show the convergence SR∞ as a function of the number of profiling traces, for
which the results are shown in Figure 7. It shows the SR∞ bound (Y-axis) as
a function of the number of profiling traces (X-axis). The curve color represents
an implementation type (except the red curve for unprotected DPA), and the
type of curve represents a SNR level. It uses 2000 repetitions, where SR∞ is
approximated using 1 million attack traces per class.

First, we can clearly see the resilience of DPA over SPA, where we only have
SR∞ < 1 for a SNR of 0.1 and less than 20 profiling traces per class. Next, for
both unprotected and Boolean masking, we can see that we are bounded by the
theoretical SR∞ of about 0.3, while it goes up to about 0.8 for the arithmetic
case. For a SNR of 1, the use of a really bad model (low Np) still allows a
higher SR∞ in the presence of arithmetic masking than for an unprotected
implementation. However, for a lower SNR of 0.1, SR∞ starts with a higher
value for the unprotected case until a better model is used (Np ≈ 25). This
confirms the previous observation that the non-linearity provided by arithmetic
masking benefits over the unprotected case only after a good enough profiling
has been performed. We also see that the number of profiling traces to reach
the SR∞ bound is higher for arithmetic masking than for the Boolean case.
This means that, in addition to arithmetic masking providing less informative
leakages, it is also a more complex model to estimate. Yet, its non-linearity makes
it to quickly reach a higher SR∞ value.

Finally, we observe that for a fixed number of profiling traces, SR∞ is higher
for the unprotected implementation than for the Boolean masking case before
reaching the bound. That is, given the same profiling strength, an attack against
an unprotected implementation will perform better than against Boolean mask-
ing, given an unbounded number of attack traces. This is not a trivial observa-
tion, as we will see when moving to the linear leakages.
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Fig. 7: SR∞ (Y-axis) as a function of the number of profiling traces (X-axis) for
Hamming weight leakages. Curve color represents an implementation type, and
the type of curve represents a SNR level.
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4.3 General linear leakages

After studying the effect of imperfect profiling in the case of Hamming weight
leakages, we study the more realistic case where we assume a general linear leak-
age form. We investigate the effect on SR∞ depending on the implementation.

Simulations : we apply our simulated setting with σ2
leakage = 0.0001 to study

the effect of imperfect profiling for linear leakages. Figure 8 shows the SR∞ (Y-
axis) as a function of the number of profiling traces (X-axis). The curve color
represents an implementation type (except the red curve for unprotected DPA),
and the type of curve (plain, dash, and dots) represents a SNR level. It uses 2000
repetitions, where SR∞ is estimated using 1 million attack traces per class.

As for the Hamming weight case, we can first see that bad modeling affects
the asymptotic success rate. However, for SPAs, we can see that each curve is
decomposed into two parts. The first part is due to the profiling being quickly
good enough for SR∞ to reach the Hamming weight bounds. After this threshold,
many more profiling traces are needed to get rid of the incorrect profiling within
the Hamming weight classes. The DPA is however not affected by this, thanks
to the varying known input and the Sbox non-linearity. Note that it is somewhat
similar to what was observed with the SR convergence towards one in the perfect
setting of Section 3.2. Yet, the difference here lies within the model accuracy with
the Hamming weight classes, and not the attack part (which is here unbounded).

Second, this figure confirms that linear leakages benefit more arithmetic
masking, as its SR∞ gets above the one of an unprotected implementation with
about Np = 15, where we needed Np = 25 for Hamming weight leakages in Fig-
ure 7. Finally, and more surprisingly, we observe interesting results concerning
the asymptotic success rate of the unprotected and Boolean cases. First, and
for all SNR levels, SR∞ starts with a higher value for the unprotected case up
to the Hamming weight bound of 0.31. This confirms what was shown in the
Hamming weight case of Figure 7, where SR∞ was higher for a given number of
profiling traces. However, as soon as the model correctly classifies the Hamming
weights (SR∞ > 0.31), the asymptotic success rate becomes higher for Boolean
masking than for the unprotected case. This remains until the profiling becomes
better, where the SR∞ against the unprotected value gets ahead again.

As a side note, we notice that SR∞ seems to decrease for the Boolean case
(SNR=0.1) when Np is very high. We emphasize that this is not an actual
trend, and is only due to the number of attack traces not being enough to get a
proper approximation of SR∞ in this case. Indeed, while the profiling gets more
accurate, it takes many more attack traces to reach the SR∞ bound due to the
masking security property.

5 Practical experiment

To validate the theoretical and simulated results of Sections 3 and 4, we con-
ducted actual experiments. We used a Chipwhisperer CW1200 with the CW308
STM32F target board [19]. The targeted microcontroller is a stm32f415rgt6
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Fig. 8: SR∞ (Y-axis) as a function of the number of profiling traces (X-axis) for
linear leakages with σ2

leakage = 0.0001. Curve color represents an implementation
type, and the type of curve represents a SNR level.

and is based on a 32-bits ARM cortex M4 architecture. The clock is generated
by the chipwhisperer at 7.3MHz and fed to the target. We sampled the power
traces at 29.7MHz (4 times per clock cycle).

As in our simulated settings, we used 4-bit values and obtained the same type
of leakages as described in Section 3.2. For the DPA, we compute the Present
Sbox. For the unprotected SPA, we simply directly load the sensitive variable in
memory. For masked implementations, to validate the simulations, we study the
security of the encoding by successively loading the two shares, with multiple
nop instructions in between. We used a gpio signal to trigger acquisitions. The
SNR level is around 6, which is typical using the chipwhisperer.

5.1 Leakage characterization

Before performing the different attacks, we performed a leakage characterization
to determine how close to the Hamming weight model the leakages are. We
performed a linear regression [24] with the 4 bits as a basis to compute the
coefficients ai as defined in Section 2.2. This gave us leakages with σ2

leakage =
0.00029, which is close to our simulations. For completeness, the value of the
coefficients are given in Appendix B.

To verify the bijectivity of the actual measurements, we computed the per-
ceived information [21] (PI) for both linear regression with a Hamming weight
and linear bases. The results are shown in Figure 9, where the Y-axis shows the
PI for a number of profiling traces given by the X-axis. The orange (resp. blue)
curve corresponds to the Hamming weight (resp. linear) basis. The right part of
the figure is a zoom where the two curves meet. As we can see, the orange PI
converges much more quickly as it is a more simple basis. The two curves reach
a very similar value, indicating that the leakages are almost as informative as
the Hamming weight function. Yet, we reach a slightly higher PI for the linear
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basis, showing the bit coefficients are slightly different, which puts us in a similar
setting as for the linear leakage ones used in simulations.
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Fig. 9: Perceived information (Y-axis) for a number of traces given by the X-axis.
The orange (resp. blue) curve is for the Hamming weight (resp. linear) basis. The
right part of the figure is a zoom of the left one.

5.2 Attack results

After confirming the bijectivity of the leakages, and their proximity to the Ham-
ming weight function, we applied a template attack on the different implemen-
tation types. The results are shown in Figure 10. The Y-axis corresponds to the
SR∞ obtained for a number of profiling traces given by the X-axis. The curve
color represents an implementation type. We used a dataset of 200,000 traces
per class, with 10-fold cross validation.

As we can see, we get very similar results as for the simulated setting of
Section 4.3. First, we can see that arithmetic masking allows to easily reach a
higher success rate than the unprotected case. We also note that due to the SNR
level being too high, we almost instantly reach a success rate higher than the
Hamming weight bounds (0.3 for unprotected/Boolean, and 0.8 for arithmetic).
The SR∞ obtained is thus mainly defined by the information carried to distin-
guish within a given Hamming weight, from σ2

leakage. Note that the DPA directly
reaches SR∞ =1, which is not surprising given the high SNR.

Finally, we do observe the interesting relation between the unprotected and
Boolean cases. Indeed, while the profiling strength is bad enough so that the
Hamming weights are not distinguished (SR∞ ≲ 0.31), the unprotected case
provides a higher SR∞ . After this threshold, this reverses, which holds until
the profiling gets accurate enough. Overall, the practical experiments confirm
the interesting properties of the SPA context, where the use of masking may
give a higher success rate given enough attack traces.
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Fig. 10: SR∞ (Y-axis) obtained for a number of profiling traces given by the
X-axis for the real measurements. The curve color represents an implementation
type.

6 Conclusion, discussion

We studied the context of SPA against unprotected and masked implemen-
tations, with different assumptions on the leakage functions and the profiling
strength of the adversary. To the best of our knowledge, this has not yet been
investigated in the literature and shows interesting properties. In the perfect pro-
filing setting, for Hamming weight leakages, we showed that arithmetic masking
allows to reach a higher asymptotic success rate than an unprotected implemen-
tation, thanks to the non-linearity brought by the carry propagation. We showed
that this still holds in the context of more realistic linear leakages, depending
on the number of attack traces used. In this context, we showed the success rate
has a two-phase convergence, where the second one is slower as it is equivalent
to attacking with a new smaller SNR, where the signal now depends on σ2

leakage.

When moving to the more practical context of imperfect profiling, we showed
that the asymptotic success rate of SPA largely depends on the profiling strength,
while DPA is much more resilient to incorrect profiling. Yet, we still showed that
more information can be recovered when targeting arithmetic masking rather
than an unprotected implementation, depending on the profiling strength and
the SNR level. Additionally, we surprisingly exhibited a case where the asymp-
totic success rate is higher in the context of Boolean masking than for an unpro-
tected implementation. Explaining this property formally would be an interesting
future research direction.

Interesting future directions could study how other masking encodings be-
have, along with more shares. Additionally, as we assumed profiling with knowl-
edge of the shares, one could investigate how the asymptotic success rate of a
DPA behaves with it is not the case.
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A Proof of proposition 1

Proposition. Two unprotected values v0 and v1 have the same Hamming weight
if, and only if, the two joint distributions of the Hamming weight of their shares
are the same.

Proof. Necessity: HW(v0) = HW(v1) implies that there exists a permutation of
the bits, denoted P, such that P(v0) = v1. The existence of P implies a bijective
relationship between the sharings of v0 and v1. Indeed, let’s consider a sharing
(a, b) such that v0 = a⊕ b. Then v1 = P(a)⊕ P(b) by linearity of P, (P(a),P(b))
is a sharing for v1 such that (HW(a),HW(b)) = (HW(P (a)),HW(P (b))). Since
the roles of v0 and v1 can be inverted, it proves the bijective relationship.

Sufficiency by contraposition: if HW(v0) ̸= HW(v1), then there exists a
sharing (v0, 0) of v0. For this sharing, there cannot be a sharing (a, b) of v1 such
that HW(a) = HW(v0) and b = 0. As a result, the joint distribution of the
Hamming weights of the shares differs between v0 and v1.

B Leakage characterization and linear regression

We used the experimental setup described in section 5 to perform a linear regres-
sion [24] with the 4 bits as a basis, and computed the coefficients ai as defined
in Section 2.2. The leakages are normalized so that the values are comparable
to the simulated results. The results are shown in Figure 11. The Y-axis cor-
responds to the leakage value for a coefficient ai given in the X-axis. We show
the median values as dots, along with the intervals containing 95% of the results
(computed with 200 experiments using 50k traces each). As we can see, while
the coefficients are very close, they seem to have small differences, indicating a
bijective leakage function close to HW. We computed the corresponding σ2

leakage,
which results in a value of 0.00029, which is close to our simulations.
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Fig. 11: Linear regression on the real measurements. The Y-axis corresponds to
the values of the ai coefficients given by the X-axis. Dots are the median values,
with their confidence intervals in blue.


