Area Efficient Polynomial Arithmetic Accelerator
for Post-Quantum Digital Signatures and KEMs

Dina Kamel™ ©  and Francois-Xavier Standaert

UCLouvain, ICTEAM, Crypto Group, Louvain-la-Neuve, Belgium
{dina.kamel, fstandae}@uclouvain.be

Abstract. Cryptographic schemes relying on Lattice-based hard learn-
ing problems are popular options for post-quantum signature and key en-
capsulation. This is for example witnessed by the selection of CRYSTALS-
Dilithium and CRYSTALS-Kyber as new standards by the National In-
stitute for Standards and Technology (NIST). Many other algorithms
are currently being considered by the scientific community. All lattice-
based algorithms rely on polynomial operations, among which the poly-
nomial multiplication is generally one of the most expensive from the
implementation viewpoint. As a result, the Number Theoretic Trans-
form (NTT) is very frequently considered to speed up the implementa-
tions of these algorithms. For this purpose, we propose a semi-generic
lightweight hardware architecture that supports polynomial operations
for multiple lattice-based schemes, namely Dilithium, Hawk, Raccoon,
Kyber and Polka. Implementation results on an Artix-7 FPGA show
that our design features a relatively small footprint compared to state-
of-the-art implementations. For example, our polynomial arithmetic core
requires 2604 LUTs, 770 FFs and 4 DSPs for Dilithium and 1583 LUTs,
458 FFs and 2 DSPs for Kyber and can operate at 100 MHz. It com-
putes NTT/INTT, point-wise-multiplication, multiply-accumulate and
addition/subtraction in 519, 134, 135 and 131 clock cycles for Dilithium
and in 455, 134, 135 and 131 clock cycles for Kyber, respectively.

Keywords: Kyber - Dilithium - HAWK - Raccoon - Polka - Number theoretic
transform (NTT) - Polynomial arithmetic - Lightweight design - FPGAs

1 Introduction

Post-Quantum Cryptography (PQC) has gained a significant momentum in re-
cent years to match the advancements on the development of quantum com-
puters [24]. Indeed, implementing Shor’s algorithm [37] on quantum computers
can break current public key cryptosystems (e.g Rivest-Shamir-Adleman (RSA)
and Elliptic Curve Cryptography (ECC)) that rely on the hardness of integer
factorization and discrete logarithms [9]. In 2016, the National Institute for Stan-
dards and Technology (NIST) launched a call for standardization of new post-
quantum public key algorithms, covering both public-key encryption and digital
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signatures. The lattice-based CRYSTALS-Dilithium [4] is one of three digital
signature schemes selected for standardization in 2022. CRYSTALS-Kyber [2],
which belongs to the same CRYSTALS family as Dilithium, was the only se-
lected scheme for Key Encapsulation Mechanism (KEM). On top of that, the
NIST posted a call for additional signature proposals to be considered in the
PQC standardization process to diversify its post-quantum signatures portfolio.
The lattice-based signature schemes Hawk [8] and Raccoon [35] were submitted
to this call and Hawk has been accepted for the second round.

All these lattice-based schemes use operations in the polynomial ring R, =
Z4[X]/(X™+1), where n is the degree of the polynomial. One of the most costly
operations is the multiplication of high-degree polynomials. The Number Theo-
retic Transform (NTT) reduces the complexity of high-order polynomial multi-
plication from O(n?) (in case of direct school-book multiplication) to O(nlogn).
As a result, most lattice-based schemes choose their parameters’ sets to enable
using the NTT allowing fast and efficient polynomial arithmetic computation.
This leads the core module that handles all polynomial arithmetic to be quite
similar. Hence, it suggests that having a generic design of a polynomial arith-
metic module that can be tailored to the above-mentioned lattice-based schemes
would be quite useful. At the same time, developing efficient implementations
that satisfy a wide spectrum of applications from high-performance through mid-
range to light-weight for different platforms (software and hardware) is a growing
research field. In this work, we focus on light-weight hardware applications.

Many efficient hardware implementations of the polynomial arithmetic unit in
the literature explore the trade off between the hardware cost and performance.
Here are some examples in the case of Dilithium. Beckwith et al. |5] proposed a
polynomial arithmetic unit featuring a radix-4 NTT that calculates two layers
of NTT/INTT at a time. This allowed to reduce the latency and the cost of
memory access while reordering coefficients during these operations to optimize
the BRAM utilization. Similarly, Wang et al. [38] employed a radix-4 NTT to
implement the polynomial multiplication. However, they opted for a conflict-
free memory mapping scheme applied to four-bank Block RAMs. In contrast,
Land et al. [23] opted for a radix-2 NTT that takes advantage of readily avail-
able DSPs on low-end FPGA. Another approach by Zhao et al. [43] is to use a
radix-2 multipath delay commutator (R2MDC) NTT architecture that has fewer
memory accesses and a simpler control logic compared to in-place NTT archi-
tectures. Gupta et al. [17] on the other hand used two dual-port RAMs in their
radix-2 NTT implementation to allow reading and writing their internal data
in a ping-pong fashion. A different strategy was presented by Pham et al. [34]
emphasizing effective hardware resource reuse and minimizing redundancies.

Similarly, there exists many works in the literature that target resource-
constrained hardware applications for Kyber. For example, Ni et al. [33] pre-
sented a compact polynomial arithmetic module promoting a BRAM-free radix-
2 NTT architecture where BRAM units are replaced with three smaller FIFOs.
Both Nguyen et at. [31] and Xing et al. [39] adopted a similar approach. Zhang
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et al. [41] on the other hand implemented a ping-pong memory access scheme
for their polynomial arithmetic module that uses a radix-2 NTT architecture.

Since Hawk is quite recently introduced, to our knowledge there has not been
any hardware implementations for it yet in the literature. Besides the actual
proposal, there has been one software implementation [15|. Nevertheless, as a
lattice-based signature, the implementation of its polynomial arithmetic core is
expected to be similar to that of Dilithium and Kyber.

Finally, and in order to cover a wider spectrum of algorithms, we also chose
to implement Raccoon which is a lattice-based digital signature submitted to
NIST in response to its call for additional digital signature schemes [35]. The
reason behind our choice is the appealing argument of Raccoon being a masking-
friendly scheme that should enable better resistance against side-channel analysis
attacks [19]. This appears as a natural motivation given the significant cost of
protecting Dilithium against leakage [3]|. For a similar reason, we added Polka
to our portfolio 18], which is a lattice-based encryption scheme developed to
take side-channel leakage into account. The design is based, among others, on
avoiding “leaky” functions such as the Fujisaki-Okamoto transform and adopting
masking-friendly key-homomorphic computations.

Based on this state of the art, in this work, we therefore propose an effi-
cient low-cost hardware design that is suitable to perform polynomial opera-
tions among which the complex NTT/INTT for any of the target lattice-based
schemes mentioned above. Concretely, our main contributions are threefold:

— First, our polynomial arithmetic module design is semi-generic in a way that
provides compile-time configurability for the scheme parameters allowing
easy implementation of any of the aforementioned lattice-base standards.
Depending on whether logn is even or odd and whether the choice of the
prime modulus ¢ allows a fully-splitting ring or not, only minor changes in
the core implementation of the polynomial arithmetic unit will be required.
Namely, the address generation of the polynomial coefficients and the twiddle
factors in the address control logic are the target of such slight modifications.
Besides, the modular reduction is not generic — hence the full design is only
semi-generic. The reason behind this is the fact that customized optimiza-
tions are required to design the Barrett reduction module for each standard
(as they obviously have different prime moduli) in order to minimize its
resource utilization for our target low-cost applications.

— Second, our compact FPGA-based polynomial arithmetic architecture has
a small area footprint for most implemented standards. On an Artix-7, our
core uses 2604 Look-Up Tables (LUT)s, 770 Flip-Flops (FF)s and 4 Digital
Signal Processor (DSPs) to implement Dilithium. For Hawk1024 and prime
modulus ps, our core occupies 4451 LUTs, 1139 FFs and 8 DSPs. In the
case of Raccoon (using the prime modulus g2 = 33292289), the resource
utilization is 3458 LUTs, 998 FFs and 4 DSPs. For Kyber, our core uses
1583 LUTs, 458 FFs and 2 DSPs. Regarding Polka, it utilizes 2512 LUTs,
593 FFs and 2 DSPs. Our core operate at a maximum of 83 to 100 MHz
depending on the standard.
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— Third, we provide the Verilog code for our design at https://git-crypto.
elen.ucl.ac.be/dkamel/genericpolyarithunit| to support open source
research, something currently lacking in the literature.

The rest of the paper is organized as follows. Section [2|introduces preliminaries.
The proposed poly-arithmetic architecture and design details of its sub-blocks
are presented in Section [3] Section [4] discusses the implementation results and
compares with related work. Section [5] concludes the paper.

2 Preliminaries

2.1 Notations

We denote by Z, the ring of integers modulo the prime g and by R, = Z,[X]/ (X"
+ 1) the polynomial ring in X modulo X” + 1, with n the degree of the poly-
nomial. We represent a polynomial with regular lowercase (e.g. a), a vector of
polynomials with bold lowercase (e.g. a) and a matrix of polynomials with bold
uppercase (e.g. A). The i-th coefficient of a polynomial is denoted by a;. The -
symbol denotes the multiplication operation whereas o refers to the point-wise
polynomial multiplication. Letters with a hat symbol correspond to their repre-
sentation after NTT (e.g. a).

2.2 Standards

Our design covers several lattice-based post-quantum standards for both digital
signature and Key Encapsulation Mechanism (KEM).

CRYSTALS-Dilithium. Dilithium is a lattice-based digital signature recently
standardized by NIST as ML-DSA in FIPS 204 [29| for secure Post-Quantum
Cryptography (PQC) in 2024. Its hardness is based on the Module Learning
With Errors (MLWE) and the Module Short Integer Solution problems. The
signature scheme design is based on the “Fiat-Shamir with Aborts” paradigm
proposed in [26}27]. The initial proposal is described by Ducas et al. in [12]
and later refined in the NIST PQC submission [4]. Its main characteristics are:
randomness generation from a uniform distribution instead of a discrete Gaussian
distribution which is difficult to implement securely and efficiently, [13], adhere
the public key and signature sizes to a minimum, and easiness to vary the security
level by changing the size of the module (dimensions of the matrices and vectors).
Relying on an algebraic structured lattice (MLWE) problem rather than an ideal
lattice (Ring-LWE) or completely unstructured lattice (LWE) problems was an
optimal intermediate solution that moves further away from the weaknesses of
ideal lattice problems while still profiting from their efficiency without the extra
cost of using unstructured LWE [12]. As for the rational behind building the
digital signature scheme using the “Fiat-Shamir with aborts” paradigm was to
reduce the size of the mask randomness and thus the signature significantly [27].
An extra rejection sampling step is needed to perform the aborts. Dilithium uses
a 23-bit prime modulus ¢ = 8380417 and degree n = 256 for all security levels.
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Hawk. Hawk is a lattice-based signature scheme whose hardness is based on
the module Lattice Isomorphism Problem (LIP) that responded to the NIST
PQC call for additional digital signature scheme. The scheme was first intro-
duced in [13] and later optimized in [8]. The goal of this call was to diversify its
post-quantum signature portfolio which is mostly based on structured lattices
so far (namely; CRYSTALS-Dilithium and Falcon). Hawk has been recently se-
lected to move forward to the second round of the standardization process. Its
main features are: randomness generation is either from a centred binomial dis-
tribution (during key generation) or from uniform distribution (during signing),
compact public key and signature sizes (even smaller than those of Dilithium),
floating-point free arithmetic which enables its implementation on various (con-
strained) hardware devices, small memory footprint and no rejection-sampling.
The basic idea was to combine the use of module lattice based on LIP and
ideas from NTRUSign and Falcon in order to design a highly efficient signature
scheme. Hawk uses two 31-bit primes p; = 2147473409 and p, = 2147389441.
The degree n is either 512 or 1024 for security level I or IV, respectively.

Raccoon. As a response to the NIST PQC call for additional digital signature
schemes Raccoon [35] was submitted, but was not selected in the second round.
It is a masking-friendly lattice-based digital signature scheme based on the “Fiat-
Shamir” paradigm. As Dilithium, its hardness is based on the MLWE problem.
The main objective of Raccoon is to build a scheme that is inherently resistant
against side-channel attacks by making its subroutines either masking friendly
(with quasilinear overheads) or ones that do not need to be masked at all. This
was motivated by the fact that even though the standardized lattice-based signa-
tures Dilithium and Falcon and the hash-based signature SPHINCS are efficient
and their black-box security is well-understood, they remain vulnerable against
side-channel attacks if left unprotected [10,|16}20,21}[28] (as some examples).
The cost of protecting these schemes using the masking countermeasure is ex-
tremely expensive. Indeed, lattice-based signatures contain subroutines (mainly
the rejection loop and the hash functions) which when masked incur quadratic
or worse than quadratic overheads, see for example [3]. Raccoon uses a 49-bit
modulus ¢ = 549824583172097 which is a composite number consisting of two
primes: 24-bit ¢; = 16515073 and 25-bit ¢go = 33292289. The degree n = 512 for
all security levels.

CRYSTALS-Kyber. Belonging to the same CRYSTALS family as Dilithium,
Kyber is a lattice-based KEM recently standardized by NIST as ML-KEM in
FIPS 203 [30] for post-quantum secure KEMs in 2022. It is based on the hardness
of MLWE where a CPA-secure Public Key Encryption (PKE) scheme is used
to create a CCA-Secure KEM by applying a variant of the Fujisaki-Okamoto
(FO) transform. Its main characteristics are: secret and noise generation from
a centred binomial distribution which is easily, efficiently, and securely sampled
from, adopting an implicit rejection approach, using a compress function to
discard some low-order bits in the ciphertext; thus reducing its size, and easiness
to vary the security level by changing the size of the module (dimensions of the
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matrices and vectors). Kyber uses a 12-bit modulus ¢ = 3329 and a degree
n = 256 for all security levels.

Polka. Polka [1§] is a lattice-based encryption scheme that relies on the re-
cently introduced Learning With Physical Rounding (LWPR) assumption [14].
As Raccoon, the main goal of Polka is to enable efficient side-channel protected
implementations, but for encryption schemes. To do that, Polka leverages var-
ious features such as the rigidity property introduced by Bernstein and Per-
sichetti [6] which allows avoiding the FO transform that proved to be a source
of side-channel leakage. It also proposes to randomize the decryption process
and adopts key-homomorphic computations that are easily masked with linear
overheads. Polka uses a 16-bit modulus ¢ = 5939 and a degree n = 1024 that
satisfies security level I.

2.3 Number Theoretic Transform

All the before-mentioned standards (and others) share the fact that their main
algebraic operation is high-order polynomial multiplication (whether on a ma-
trix, vector or a single polynomial). The NTT is the most efficient method for
multiplying two high-order polynomials where the complexity is reduced from
O(n?) in case of school-book multiplication for example to O(nlogn) in case of
NTT. The NTT is the special case of Discrete Fourier Transform (DFT) over
finite-field polynomials in Ry = Z,[X]/(X™ + 1). This ring structure enables
the implementation of the Negative Wrapped Convolution-based (NWC) NTT
effectively. Accordingly, n is a power of two and the prime modulus ¢ satis-
fies ¢ = 1 mod 2n, such that the primitive 2n-th root of unity ¢ in Z, exists;
thus allowing a “fully-splitting” of the NTT algorithm. The NTT transform can

therefore be written as: )
n—

aj = Z a;¢? V" mod q, j € [0,n —1]
i=0
Conveniently, the inverse NTT (INTT) is also straightforward and can be written

as:
n—1

a; =n"! Z djg*@i“)j mod ¢, i € [0,n — 1]
j=0

Now, one can compute pol;nomial multiplication efficiently using NTT as a-b =
INTT(NTT(a) o NTT(b)). The radix-2 NTT is the simplest form of NTT where
a polynomial of length n is split into two parts of length n/2 and this can go
on recursively until the original polynomial is reduced to degree 0. One efficient
algorithm is the Cooley-Tukey (CT) butterfly that takes advantage of the fact
that (" = —1 mod ¢. As a result it holds that X" +1 = X" — (" = (X% —
¢%) x (X% +(%) mod q. If this step is repeated logn times then the polynomial
X"™ + 1 can therefore be written as

n—1 n—1
X" 4+ 1= H(X - <2i+1) _ H(X - CQbrvlogn(i)Jrl)’
=0 =0

where the bruiog »(2) is the bit reversal of the unsigned log n-bit integer i. This
essentially implies that if the coefficients of the polynomial are kept in natural
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Fig. 1: Signal flow graph of radix-2 NTT/INTT for n = 8.

order (no), after the NTT operation they will be in bit-reversed order (bo). On
the other hand, the INTT can be efficiently implemented using the Gentleman-
Sande (GS) butterfly algorithm by inverting the mapping process. Keeping the
inputs in bit-reversed order will result in naturally ordered coefficients after the
INTT operation. This is quite convenient as it avoids the cost of reordering
the polynomial coefficients [36]. Figure [1| shows the flow diagram for an 8-point
radix-2 NTT and INTT using CT and GS algorithms, respectively.

2.4 NTT in Target Standards

The ring structure of Dilithium, Hawk, Raccoon and Polka were carefully chosen
to enable the fully-splitting of the NWC NTT effectively without zero-padding.
Accordingly, n is power of two and the prime modulus ¢ satisfies ¢ = 1 mod 2n,
such that the primitive 2n-th root of unity ¢ in Z, exists. Therefore, the defining
polynomial X™ + 1 of the ring R factors into n polynomials of degree 1 modulo
g and the NTT of a polynomial a € R, is a vector of n polynomials of degree
zero. Powers of ¢ in the range (0 : n — 1) are referred to as twiddle factors.
Polynomial multiplication can be efficiently computed using NTT as described
in the previous section.

As for Kyber the prime modulus ¢ is chosen to satisfy ¢ = 1modn (instead
of ¢ = 1mod2n), such that the primitive n-th root of unity (instead of 2n-th
root of unity) ¢ in Z, exists. The idea of decreasing the prime modulus was
presented in [44] citing the main advantage as enabling the reduction of both
the public key and the ciphertext sizes. As a result of this choice, the NTT
algorithm cannot fully split. However, the defining polynomial X" + 1 of the
ring R factors into n/2 polynomials of degree 2 modulo ¢ and the NTT of a
polynomial ¢ € R, is a vector of n/2 polynomials of degree one. This leads
to powers of ¢ being in the range (0 : n/2 — 1). Polynomial multiplication can
be computed using NTT as a - b = INTT(NTT(a) o NTT(b)). Nevertheless,
NTT(a) o NTT(b) = G ob = ¢ consists of the n/2 products in the form of
Coi+Coi1 X = (&21 + &2i+1X).(lA)2¢ + 82i+1X) mod(X2 — CQbTv(ngn_l)(i)—i_l), where
i is the coefficient index and brv(jog ,—1) is the bit reverse operation over (logn —
1)—bits. As a result, an additional school-book multiplication is necessary to
complete the polynomial multiplication.
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For each of Dilithium, Kyber and Polka, the prime moduli used are all less
than 31 bits which can easily fit on 32-bit platforms (mostly applicable to soft-
ware). However in the case of Hawk and Raccoon, the moduli needed are larger
than 32-bits. As a result, both schemes opted to apply the Chinese Remain-
der Theorem (CRT) and split the large modulus into two smaller primes to fit
into 32-bit platforms, as explained in Section then perform the necessary
operations over these two primes.

3 Proposed Poly-Arithmetic Architecture

In this section, we describe the architecture of our proposed semi-generic poly-
arithmetic core which is responsible for the computation of all polynomial op-
erations in the target standards.

3.1 Architecture overview

Figure [2al demonstrates the high-level architecture of the poly-arithmetic mod-
ule. Our design consists of two butterfly units (BFUs) arranged in parallel (BFU
2X1), an address control unit with conflict-free memory access (thanks to an
integrated address resolver block), a twiddle factor memory (TF ROM) as well
as some data and control multiplexers. The proposed poly-arithmetic module is
able to perform both radix-2 NTT and INTT as well as polynomial arithmetic
operations such as pointwise multiplication (PWM), multiply and accumulate
(MAC), addition (ADD) and subtraction (SUB) for all target standards. Addi-
tionally, the poly-arithmetic unit handles all interactions with the data RAMs
where the polynomial coefficients are stored.

To meet the bandwidth requirement, the data RAMs are designed as a 4-bank
memory block depicted in Figure [2bfsimilar to [23}/42]. The goal is to ensure that
the four different polynomial coefficients accessed in parallel during NTT/INTT
are always located in four different banks to guarantee a conflict-free memory
access without having to shuffle and reorder the coefficients. Although a more
efficient BRAM configuration that has a higher utilization of each memory row
was proposed by [5], their final BRAM cost of a full Dilithium implementation at

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Fig. 2: (a) Proposed architecture and (b) internal RAM and data MUX structure.
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security level 5 is slightly less than that of [23]. The banks are implemented with
dual-port 36-kbit block RAMs capable of reading and writing in the same clock
cycle. Each BRAM is configured as 1024 x 36 memory. This configuration can
store up to 16 polynomials of degree n = 256, 8 polynomials of degree n = 512 or
4 polynomials of degree n = 1024. Although the utilization of each memory row
is not maximized for all target standards (66%, 86%, 69% in case of Dilithium,
Hawk and Raccoon, respectively and 33% and 44% in case of Kyber and Polka,
respectively), for the sake of generality we decided to keep such configuration. For
NTT, INTT a single data RAM is needed. The addition, subtraction and point-
wise multiplication operations require two data RAMs where coefficients of two
distinct polynomials are stored. As for the MAC operation, three data RAMs are
employed. Two RAMs store the coefficients of two polynomials to be multiplied
and the third RAM stores their product which is later accumulated as required
by operations over vectors of polynomials. The data multiplexers/demultiplexers
are internally divided into 4 blocks, each connected to a bank RAM and con-
trolled by the address controller via the rbank and wbank signals for read and
write operations, respectively. The TFs are stored in a distributed memory (TF
ROM). Details of each block are provided in the following sections.

3.2 Dual Butterfly module

The butterflies arrangement in the BFU 2X1 block is illustrated in Figure [3]
The two BFUs, each capable of performing both CT and GS butterfly opera-
tions as well as basic arithmetic operations such as multiplication, addition and
subtraction, are placed in parallel. They process either 4 coefficients per clock
cycle during NTT/INTT or 2 coefficients per clock cycle during all other oper-
ations when the pipeline is fulfilled. The multiplexers at the inputs and outputs
provide the design with the flexibility to change between the operating modes
depending on the 3-bit mode signal as explained in Table

datai[3:0]

1

.. Gataolzo] __________

[7:0] " 2[1:0] ~datai[3:0] -

i

“ace

i [0:NTT, 1:ADD
|| 2:PWM, 3: INTT
| | 4:MAC, 5:sUB BFU 2X1

Fig. 3: Dual Butterfly unit.

3.3 Modular Reduction

The modular reduction is the main operation that has to be tailored to the prime
modulus adopted by each standard. Different modular reduction techniques exist
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Table 1: Dual butterfly unit in/out interconnections. "X’ represents a do not care
state and -’ denotes an unconnected input.

Operation|NTT|ADD | PWM|INTT|MAC|SUB
mode[2:0]| 0 1 2 3 4 5
datai[0] | ao ay ay ao ar | ar
datai[l] | a1 | a c1 ai a | a
datai[2] Co - - Co - -
In datai[3] c1 - - c1 - -
’ Z[O] z0 X z20 Z0 z0 X
z[1] 21 X 21 21 21 X
acc|0] - ao X - ap | ao
acc|1] - co X - co co
datao[O] bo bo b1 bo bo by
Out datao[l] b1 do dy b1 do d1
‘| datao[2] | do | O 0 do 0 0
datao[3] | di 0 0 d1 0 0

in the literature. The most common are the Montgomery and the Barrett reduc-
tion algorithms. However, both of these algorithms require additional multipli-
cations, which are expensive in time and hardware resources. Beckwith et al [5]
implemented Barrett reduction in hardware for Dilithium by only using shifts
and additions. Nevertheless, their optimization method is highly customized to
Dilithium’s modulus using a complex Verilog code (available online [1]) and
as a result difficult to reuse in case of other moduli. Another reduction tech-
nique recursively exploits the congruency relation within the prime modulus.
For example in the case of Dilithium, ¢ = 223 — 2!3 4 1, so by exploiting the
relation 223 = 213 — 1 mod ¢ recursively as in [23]. Other reduction techniques,
which are variants of Montgomery reduction, such as KRED, KRED-2X [25]
and K’RED [7] are also proposed in the literature. They require the modulus
to be a Proth prime of the form ¢ = ¢,2“ + 1, where w > log ¢/2 which is not
the case for all supported standards.

An optimized Barrett reduction implementation customized for a specific
modulus using only addition, subtraction and shift operation was proposed in [22]
and used for the Dilithium modulus in [34]. The basic principle of the original
Barrett reduction is to subtract the multiplication result between the quotient
|U/q| and the modulus ¢ from the input number U. To avoid the expensive
division of U and ¢, 1/q can be replaced by T/2¥ which is just a right-shift
operation and T = [2%/q| such that:

D=UxT)>>k,
Umodg=U—-D xgq,

Algorithmexplains the optimized version of the Barrett reduction as in [22].
The input U is split into two overlapping parts, where the upper value V' and
the lower value Y intersect in minimum two bits. Instead of multiplying the
2 log g-bit value U by T', the smaller upper value V', which is the most-significant
bits (MSB)s of U replaces it then the product is scaled by ~ 1/q (1/2Mlgal+1)
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Algorithm 1 Optimized Barrett reduction [22,34]

Require: U, ¢, [ = [logq], T = [2%'/q|
Ensure: Z = U mod q
:V=U>>(1-1)
W=(VxT)>>(+1)
X = (W x q) mod 2'+!
Y = U mod 2!
if Y < X then
Z=2"1y X
else
Z=Y-X
end if
10: if Z > q then
11: Z=7Z—q
12: end if

©

The scaled product is then multiplied by ¢ as in the original Barrett reduction.
Finally, the subtraction step is performed slightly different where the lower bits
of this product is subtracted from the least-significant bits (LSBs) of the input Y.
We follow the same path and optimize the modular reduction for each modulus
of the target standards. Here we present the Barrett reduction of Dilithium and
Kyber as examples due to space restrictions.

Dilithium Figure [4] illustrates the optimized Barrett reduction for Dilithium,
i.e. for the specific prime ¢ = 8370417, where the parameter | = 23 and the
constant T = 8396807. The figure first shows a full multiplication between two
23-bit integers A and B which requires two DSPs. The DSP48 slices available on
the target Artix7 FPGA allow multiplication between signed 25-bit and 18-bit
values. As a result, to multiply two 23-bit values, two DSPs are required as well
as a shift and an addition operation which are available within the DSP slice.
The modular reduction then follows the steps in Algorithm[I] A highly optimized
method to perform the multiplication by constants (T, ¢) using only addition,
subtraction, xor and shift operations was detailed in [34] and presented here.
The reduction operation is divided into two parts. The upper half multiplier
(UH-MULT) sub-block handles the multiplication of the most-significant bits of
the full multiplier V' = U[45 : 22] by the constant value T

VxT=V[23:0] x (22 +213 122 124 1)
=213(210V[23: 0] + V[23: 0]) + 2(2V[23 : 0] + V[23 : 0]) + V[23 : 0]
=232V [23: 0] + V[23: 0]) + 2(2V[23 : 0] + V[23 : 0] + V'[23 : 1])
+ V(0]
Vi[34: 0] = 2'°V[23: 0] + V[23: 0]
= concat{V[23 : 0] + V[23 : 10}, V[9 : 0]}
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where, the concatenation from the MSB on the left to the LSB on the right is
denoted by the concat function.

V2[25:0] =2V[23: 0]+ V[23:0] + V[23 : 1]
=(V[23:0] << 1)+ V[23:0]+V[23:1]
V x T =2V1[34: 0] + 2V5[25 : 0] + V[0]
=2(2"V4[34: 0] + V2[25 : 0]) + V[0]
= concat{V1[34 : 0] + V2[25 : 12], V5[11 : 0], V[0]}
Vig = V1[34 : 0] 4 V225 : 12]
Now, the output of the UH-MULT is computed as:
W23:00=(VxT)>>24
= ‘/12[34 : 11]
Next, the lower half multiplier (LH-MULT) manages the multiplication of W[23 :
0] by Dilithium prime modulus gq.
W xqg=WI[23:0] x (225 — 213 +- 1)
= 21321923 : 0] — W23 : 0]) + W[23 : 0]
= concat{2'°W[23 : 0] — W[23 : 0] + W[23 : 10], W[12: 0]}
X[23:0] = (W[23: 0] x g) mod 2%
= concat{2'°W 0] — W[10: 0] + W[23 : 13],W[12: 0]}
W,[10: 0] = W[23 : 13] — W10 : 0]
Then, the output of the LH-MULT is computed as:
X[23 : 0] = concat{2'"°W[0] + W,[10 : 0], W[12: 0]}
= concat{W[0] ® W,[10], W,[9 : 0], W[12 : 0]}

——————————————————————————————————————————————————————————————————————————

V230l A~
+

' 14
1 f=vi23:10)

concatenate

- 5 26 V,[25:12]

:
|
:
|
' V[23:0] '
1 2 UH-MULT  V,[38:11]
o -] VXT>»24 24}

0
1 Modular reduction
'

@jeusieou0d

Fig. 4: Dilithium modular reduction module [34].
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The X value in fact represents the multiples of ¢ that is closest to the LSB
of the input to the reduction module Y. Finally, X is subtracted from Y at the
output of the LH-MULT sub-block and stored in Z. A multiplexer is needed in
case Z > q. The design consists of 4 pipeline stages, the first two are deployed
within the full multiplier (inside the DSPs). The third pipeline stage is located at
the output of the UH-MULT sub-block. To respect the timing, a pipeline stage
is added on the LSB of the input to the reduction module U[23 : 0]. The fourth
and final pipeline stage is placed at the output of the modular reduction block.

Kyber Similar to the Barrett reduction for Dilithium, the one for Kyber is
optimized for the specific prime ¢ = 3329, where the parameter | = 12 and the
constant 1" = 5039. Figure [5] first shows a full multiplication between two 12-
bit integers A and B which takes place within a single DSP slice. The modular
reduction then follows the steps in Algorithm [I] Using the same optimization
techniques as in the Barrett reduction of Dilithium, multiplication by constants
(T, q) needs only addition, subtraction, xor and shift operations.

The reduction operation is divided into two parts. The upper half multiplier
(UH-MULT) sub-block handles the multiplication of the most-significant bits of
the full multiplier V' = UJ[23 : 11] by the constant value T

VxT=V[12:0] x (22427 +2% +27+2° + 23 + 22 4 2 +1)

=2°(2"V[12: 0] + V[12:0]) + 22(2"V[12: 0] + V[12: 0))
+2(2"V[12: 0] + V[12: 0]) + (2TV[12: 0] + V[12: 0]) + 23V [12: 0]
Vi[20: 0] = 2"V[12: 0] 4+ V[12: (]
= concat{V[12: 0]+ V[12:7],V[6 : 0]}
V x T = 25V7]20 : 0] + 22V3[20 : 0] + 2V4[20 : 0] + V3]20 : 0] + 23V [12 : (]
= 2°V1[20 : 0] +2(2V4[20 : 0] + V1[20 : 0] + V4 [20 : 1]) + V4 [0]
+ 23V [12: 0]
V5[22 1 0] = 2V4[20 : 0] + V4[20 : 0] + V4[20 : 1]
= (V1[20: 0] << 1) + V4[20 : 0] 4 V1[20 : 1]
V x T = 2°V1]20 : 0] + 2V5[22 : 0] + V4 [0] + 23V [12: 0]
= concat{V1[20 : 0] + V2[22 : 4], V[12: 2], V[1 : 0] 4+ V2[3 : 2], Va[1 : 0],
Vi[0]}
Vi = V1[20: 0] + V[22 : 4] + V[12: 2]

Now, the output of the UH-MULT is computed as:
W[12:0]=(V xT) >> 13

Next, the lower half multiplier (LH-MULT) manages the multiplication of
W12 : 0] by Kyber prime modulus gq.
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W xq=WI[23:0] x (22 —29 — 28 1-1)
= 28(2*W[12: 0] — 2W[12: 0] — W[12:0]) + W[12: 0]
= concat{2*W[12: 0] — 2W[12: 0] — W[12: 0] + W[12: 8], W[7 : 0]}
X[12:0] = (W[12: 0] x ¢) mod 2'*
= concat{2*W[0] — 2W[3: 0] — W[4 : 0] + W[12: 8], W[7 : 0]}
W,[4:0] = W[12:8] —2W[3:0] — W[4: 0]
Then, the output of the LH-MULT is computed as:
X[12: 0] = concat{2*W[0] + W[4 : 0], W[7 : 0]}
= concat{W1[0] & W[4], W,[3 : 0], W7 : 0]}

The X value in fact represents the multiples of ¢ that is closest to the LSB
of the input to the reduction module Y. Finally, X is subtracted from Y at the
output of the LH-MULT sub-block and stored in Z. A multiplexer is needed in
case Z > q. The design consists of 4 pipeline stages as in the Barrett reduction
of Dilithium. In order to preserve timing between the different standards’ imple-
mentations, two pipeline stages are used inside the full multiplier even though,
one would have been enough in the case of Kyber. The third and fourth pipeline
stages are placed similar to the Dilithium Barrett reduction module.

3.4 Butterfly Unit

A compact fully pipelined butterfly architecture that supports all polynomial
operations leveraging resource sharing is demonstrated in Figure[6] It is inspired
by the work of Pham et al [34] where one of the four deployed computational
elements efficiently implements the CT and the GS butterfly operations as well
as the remaining arithmetic operations, such as addition, subtraction, pointwise

V[12:0]

V,[20:0]

V[12:2]
UH-MULT "
1 VxT>»13

V,,[21:8]

u12:0]

i
Fmmmomemmmmmmmmmoeoos W[12:0] '
|

1 X12:0]
)

ajeualesuod

Fig. 5: Kyber modular reduction module.
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multiplication and multiply-accumulate. The BFU unit is configured to operate
in 4 modes (NTT/MAC, ADD/SUB, PWM and INTT) using only the 2 LSBs
of the mode signal controlling the BFU 2X1 module. Since the MAC operation
is basically the same as one NTT butterfly operation, but with outputs only
from by and not by and by so they both share mode[1:0] of 0. Similarly, the
ADD and SUB operations are both done internally only outputed on different
outputs and they have the same mode[1:0] = 1 within the BFU block. They
only differ at the BFU 2X1 level where we need the full 3-bit mode to route
the correct outputs. These different modes of operations are facilitated by the
integration of 9 ¢-bit 2-MUXs. The butterfly module also comprises a modular
reduction block after the multiplication is performed. It uses the optimized form
of Barrett reduction as detailed in Section Instead of multiplying with 256!
in the last step of the INTT, a divide-by-2 operation is incorporated inside the
BFU module. This division operation only requires low-cost shift, addition and
multiplexer blocks as explained in [42]. For all target standards, the BFU block
is instantiated in the same way, only the sizes of the signals are adapted to each
standard’s data width and the corresponding Barrett reduction block is called
explicitly for each standard. The BFU block performs its operations as follows.
For NTT, the bg = ag+a;-29 mod q and by = ag—a; - zp mod ¢, where ag and a;
are the input coefficients and the twiddle factor (stored in a distributed memory
in the order of its fetch request) is applied to the zo input. The INTT operation
is carried out as by = (agp + a1)/2 modq and by = (ag — a;) - z0_1/2 mod q.
In this case to compute z, ! the twiddle factor is loaded from the memory in
reverse order (at the layer level) and subtracted from ¢, allowing the reuse of
the twiddle factors of NTT. This is inline with the symmetry property of the
twiddle factor ¢**"™ = —(* where k is an integer. For modular multiplication, the
factors are the inputs a; and zg, whereas input ag is only used to accumulate the
product of previous multiplications in case of the MAC mode (used for matrix-
vector and vector-vector polynomial multiplications). As for modular addition
and subtraction, the polynomial coefficients are entered through the inputs ag
and a; that have direct access to the adder/subtracter blocks through a few
independent multiplexers and FFs. Similar to the NTT, INTT and multiplication

ode[0]

Fig. 6: Butterfly unit block diagram.
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operations, a few extra registers are required to balance the pipeline latency. For
NTT, INTT and MAC operations, the latency is 7 clock cycles. As for PWM,
ADD and SUB operations, the latency is 6, 3 and 3 clock cycles, respectively.
The cost of NTT/INTT operations is n/4 - logn + ¢ clock cycles whereas that
of the other operations is n/2 + ¢, where ¢ is the latency.

3.5 Address Controller

The address controller module is responsible for generating the read/write ad-
dresses of the polynomial coefficients for all six operations as well as the read
addresses of the twiddle factors in the case of NTT/INTT. It also provides the
select signals to the data and address multiplexers connected to the external
RAM blocks. It supports all target standards by simple and inexpensive tweaks.
In the case of NTT/INTT, two main factors affect how the address controller
block generates the read addresses according to the required standard. The first
is the number of NTT levels log n whether it is even or odd. The second factor is
whether the NTT fully splits into degree 0 polynomials or not as in Kyber. Since
the design consists of two parallel butterfly units, four polynomial coefficients
are processed per clock cycle. For any standard, the read addresses of every four
coefficients in each two successive levels are the same, only in different order.
The first and fourth coefficients remain unchanged and only the second and
third ones that switch places between even and odd stages. Figure [7] illustrates
the read address call sequences of the twiddle factors for the NTT/INTT oper-
ation and the polynomial coefficients for all operations applicable to Dilithium
as an example of a standard that has a fully splitting polynomial ring and the
number of its NTT levels is even. Two brackets per line represent address(es) of

Twiddle factor PWM/MAC/ADD/SUB
(oo TTTTTTTTTTTTTTmmmm T s m s m \ (CoTTTTTTTTTT T
i NTTROM ' ! i
' 1 '
! [ tevelo Level 1 Level 2 Level 3 Lovel7 | 1 ! '
' '
! o) 1 ! 1
1 ol [4] [4] 8] [9) 128] [129]
B wo | wm [@e [ %F ey i i
Ve 3 6] [6] [ 1
- :71 = [parvs 12541(255] | | i !
| | 1 a2 o (28] 1
' ' ! = o M [129] !
I ! Vg !
' [ Level 7 Level 3 Level 2 Level 1 Levelo |1 , B 11261 124 H
! . 1 ! [127]  [255) |
: s $|[255]1254] nsl (4] | (71 (711 | ! !
1 [O g [6] [6] 6112 nrm ! : :
1 |€ B| (1291 1128] o1 8] | [5] 5] \ | H
- 4] [4] 1 ! 1
1 ! 1
\ INTTROM ' ! !

e e e e e e e ’ M eccccccccccccccas ’
NTT/INTT
PP ppepeperey
! Level 0 Level 1 Level 2 Level 3 Level 7 '
' 0,321 [16,48] | [0,16] [32,48] 10,1] 23 | |
' '
! 1547] (31,631 | [15,31] [47,63] '
| [64,96]  [80,112] | [64,80]  [96,112] i
! 2| 10,128]  [64,192] | [0,64]  [128,192] '
: E 9| 1,129] 165,193] | [1,65] [129,193] | [79,111]  [95,127] | [79,95]  [111,127] 1
|z g [128,160]  [144,176]|[128,144] [160,176] .
' ©| [63,191]  [127,255] | [63,127] [191,255] I
' [143,175] _ [159,191]|[143,159] _ [175,191] !
' [192,224] [208,240]|[192,208]  [224,240] !

'
i 207,239] _ [223,255]|[207,223] _[239,255] 252,231 _[254,258]] |
)

Fig. 7: Address generation of twiddle factors and polynomial coefficients for stan-
dards supporting fully-splitting NTT with even number of levels.
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polynomial coefficients (or twiddle factors) required by the two BFUs. Regard-
ing NTT/INTT, four addresses of different coefficients from the same polynomial
and two twiddle factor addresses are generated. As for the remaining operations,
a single address is produced per BFU since they operate on the same coefficient
in two different polynomials placed in different memories.

If the number of NTT levels is odd, read address generation for all successive
pairs of the NTT stages remain the same as explained before. However, the cod-
ing of addresses of the last stage which is odd is different. In a fully-splitting NTT,
the last stage must process consecutively ordered coefficients. Finally for Kyber
where the NTT does not fully split, the modification is quite trivial where the
level count stops at log n—1, but the read address generation remains unchanged.

Since the polynomial coefficients are placed in a data RAM designed as a
four-bank memory, the read addresses generated so far need to be mapped to
real RAM addresses as presented in [23}/42] using an integrated address resolver
block within the address controller module. The bank address for selecting the
memory banks and the new addresses of the coefficients are computed as follows:

[3logy(n)]-1
BankAddr = Z RawAddr|2i 4+ 1 : 2i) mod 4
i=0
NewAddr = RawAdrr >> 2,
where 17 is the bit position. This guarantees a conflict-free memory access.

To generate the write addresses, one straightforward method is to use shift
registers to propagate the read addresses for the necessary number of clock cycles
according to the pipeline depth of each operation. However instead of delaying
the read addresses, we opted to store them in a small ROM (distributed mem-
ory) of length that equals the maximum pipeline depth (which is that of the
NTT/INTT operation). The address of this ROM is a simple 3-bit counter. The
polynomial coefficient read addresses are written inside the ROM upon a read
enable signal. Similarly, the write addresses are read from the ROM upon a write
enable signal that is activated after the pipeline is fulfilled for each operation.
Figure [§] shows the timing diagram of the write operation taking the pipeline
depth of the NTT/INTT as an example.

Read_en _,
000000000000000000000000C
e 0000 000 6006060060000000000!

ROM[0] X T X T X
ROM[1] X L5} X e} X
ROM[7] X Y X
Write_en I
i 00000000000000000

Fig. 8: Write address generation timing diagram for an NTT operation.
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4 Implementation results

Our proposed architecture was implemented on an Xilinx XC7A100T Artix-7
FPGA using Vivado 2022.1. For each standard, post-place and route (PnR) sim-
ulations using the Vivado simulator were performed.Table [2] details the resource
utilization of our butterfly and modular reduction (MR) units and compares
them to the state-of-the-art. Our Dilithium BFU is similar to the first control
element (CEOQ) of [34]. The nubmer of required LUTs is slightly higher as for the
number of FFs, we report 48% more because we deploy registers at the input
and output of the BFU whereas in [34] they do not show these registers in their
FF count, but from their NTT latency it is evident that they also implement
these registers, but most probably at a higher level. Compared to [33]’s lookup-
table-based modular reduction, our Kyber MR unit needs 64% more LUTs and
only 4 more FFs. In [11] the number of LUTs and FFs of the BFU are almost
the same for both Dilithium and Kyber. This is because the authors unified
the butterfly unit to support multiple lattice-based PQC schemes at run time.
Our Dilithium and Kyber BFUs (that are tailored at design time) require 43%
and 65% less LUTs and similar percentages less FFs, respectively. Table |3 shows
the implementation results of the polynomial arithmetic unit and comparison
with state-of-the-art.

For Dilithium, our proposed architecture fairly occupies overall less resources
compared to other existing implementations. It requires 2604 LUTs, 770 FFs and
4 DSPs. Since our design targets low-cost area-constraint applications, we opted
to optimize each sub-block individually while promoting resource sharing wher-
ever possible. Using the same FPGA, Nguyen et al. [32] designed a configurable
high-speed NTT accelerator suitable for both Dilithium and Kyber and supports
both radix-2 and radix-4 MDC NTT operation. Compared to their radix-2 im-
plementation, our design occupies 2.85x less LUTs and 6.85x less FFs, at the
expense of an extra 4 DSPs. Land et al. [23] proposed a mid-range implementa-
tion that focused on optimizing the usage of LUTs and FFs by exploiting DSPs
available in low-end FPGAs. Their design consists of three modules (NTT based
on two radix-2 BFUs, Multiply-Accumulate and Matrix-Vector Mult.) that col-
lectively perform the poly arithmetic functions. Our design needs 2x less LUTs,
1.6x less FFs and far less DSPs. A single BRAM is needed to store the twid-

Table 2: Detailed Resource utilization comparison with state-of-the-art imple-
mentations of the butterfly and the modular reduction units.

Work[Module[LUT[ FF [DSP[[Work[Module[LUT| FF [DSP
Dilithium Kyber

BFU [351[209] 2 BFU

B vr [ 60 |71 ] o || B3] (MR |50 [34] 0

1) | BFU [ 705 |488| 8 || 3y | BEU [ 703 [474[ 8
| MR | MR

. | BFU [400[310[ 2 [[ | BFU [241[167[ 1
| MR [114| 72| 0 | MR | 82 (39| 0
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Table 3: Resource utilization comparison with state-of-the-art implementations
of the poly arithmetic unit.

Resources Freq. | Latency (CCs
Work] Plat. | n[log2(@)1|y yp| pp |DSP|[BRAM|[MHy] NTT[INTi(“[PV\;M
Dilithium
[ [32] | A7 [256 [ 23 [7451[5275] 0 [ 0 [ 180 [319 [ 319
[ [23] | A7 256 | 23 [5676|1218| 41 | 1 | 311 | 533 | 536
[5] [VUS+[256 [ 23 [4509|3146] 8 | 0
| [43] [Z7000] 256 | 23 [2812]|1748| 10 | 2 296 | 296
[ [17] [ZUS+| 256 | 23 [27592037| 4 | 7 606 | 614 | 147
[34] [ZUS+[ 256 | 23 [2637]1071| 8 | 1 [ 385 | 268 | 268
[ [38] [27000] 256 | 23 [2386]932 | 8 | 1 [ 217 [ 264
[11] [ A7 [ 256 | 23 [2119[1058] 8 | 3 | 117 |1052| 13187 3688
» | A7 [256] 23 [2604/770| 4 | 0 [100 [519 519 | 134
Hawk
512 31 [3801[1135] 8 [ 0 [ 83 [1159[1159] 262
. | a7 |512| 31 (3968/1135 8 | 0 | 83 |1159/1159 262
1024| 31 [4287|1139| 8 | 0 | 83 |2567|2567| 518
1024| 31 [4451|1139) 8 | 0 | 83 |2567|2567| 518
Raccoon
. | a7 [512] 24 [3194]912] 4 [ 0 [ 83 [1159[1159[ 262
512 | 25 [3458/998| 4 | 0 | 83 |1159|1159 262
Kyber
[ [32] [ A7 [256 [ 12 [4834[4683] 0 [ 1 [ 250 [ 247 [ 247
[L1 [ V7 [ 256 | 12 [2128]1144| 8 | 3 | 174 [ 922 | 1184|3812
39 [ A7 [256 [ 12 [1579]1058| 2 | 3 512 | 448 | 256
[ [31] | A7 [ 256 [ 12 [1416|1074| 2 | 1.5 | 227 [ 448 | 448 | 256
[ [33] | A7 256 | 12 [1154[1031| 2 | 0 | 300 | 456 | 456 | 265
40] | A7 1256 | 12 [948 352 | 1 | 25 [ 190 | 904 | 904 | 3359
(A1 [ A7 [256 [ 12 [609 | 640 | 2 | 4 | 257 | 490 | 490
|~ [A7 [256| 12 [1583]458 | 2 | O | 100 | 455 | 455 | 134
Polka
» | A7 [1024] 16 [2512[593] 2 | 0 | 100 [2567]2567] 518




20 Dina Kamel™ )| and Francois-Xavier Standaert

dle factors whereas we decided to use a distributed ROM instead. In [5] the
authors targeted a high-performance implementation. They use a radix-4 2 x 2
NTT BFU arrangement to speed up the NTT and INTT operations. As a result,
their design requires 1.7x, 4x and 2x more LUTs, FFs and DSPs than our de-
sign, respectively. Zhao et al. [43] proposed a compact and high-speed hardware
design that employs four BFUs in a radix-2 R2MDC NTT architecture. Our
design utilizes slightly less LUTs, 2.3x less FFs and 2.5x less DSPs. The two
BRAMs are reportedly used to store the twiddle factors and to replace large
shift registers (required by the R2MDC NTT). The work by Gupta et al. [17]
reports a lightweight hardware implementation that invested in resource and
control logic sharing as well as pre-computed LUTs among other optimization
strategies. Their design requires two radix-2 BFUs and two 64 x 256 dual-port
RAMs to transfer internal computations of NTT in a ping-pong fashion until all
the layers have been processed. Our design requires slightly less LUTs, 2.6 less
FFs and the same number of DSPs. As for the BRAM cost, their design uses 7
BRAMs, however, it is not clear how they are exploited. The polynomial arith-
metic module introduced in [34] targets a lightweight hardware implementation
even though it implements a radix-4 NTT. Our design employs almost the same
number of LUTs and 1.4x less FFs, but half the DSPs. Wang et al. [38] targets
a high-performance efficient design that uses a radix-4 NTT block. Among the
reported state-of-the-art, Wang’s implementation is the smallest even though it
requires 4 BFUs. Yet, our design still uses less FFs (18%), slightly higher LUTs
(9%) and half the DSPs. An interesting implementation by [11] offers both run-
time and compile-time configurability to cover a wide base of parameter sets (n
and ¢) and performance requirements of various platforms. Compared to their
one BFU implementation, our design uses 23% more LUTs, but it requires 27%
less FFs and half the DSPs. Our design can run at a maximum frequency of 100
MHz on Artix-7 FPGA. Indeed, this is less than the state-of-the-art reported
frequencies. Nevertheless, they mostly used high-speed FPGAs and targeted ef-
ficient high-performance applications. In addition, our target is area-constrained
applications, therefore the maximum frequency requirement can be relaxed. We
also provide latency figures for all polynomial operations which admittedly lie
mid-range the state-of-the-art spectrum.

For Kyber, our proposed architecture requires 1583 LUTs, 458 FFs and 2
DSPs. Compared to the configurable design of Nguyen et al. [32], our imple-
mentation needs 1.9x less LUTSs, 7.9%x less FFs at the expense of an extra 2
DSPs. Compared to the one BFU implementation of [11], our design uses 1.3x
less LUTS, 1.88x less FFs and 4x less DSPs. Xing et al. [39] implemented a
compact hardware design. Our design needs slightly more LUTs, but 2.3x less
FFs. Works such as [31}33] opted to rearrange the order of the polynomial coeffi-
cients at all NTT/INTT stages instead of changing the data addresses to access
the coefficients stored in the RAMs in a conflict-free memory access fashion.
This requires the use of a reordering unit that also acts a temporary memory to
hold coefficients after each stage. Their design eliminates the need for additional
memory usage in the iterative NTT design claiming to simplify the control logic.
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Our design again requires slightly more LUTs, but 2.3x less FFs. Yaman et
al. [40] proposed three different hardware architectures (lightweight, balanced,
high-performance), we compare our work to their lightweight implementation
that employs one BFU. Indeed their design occupies 1.67x less LUTs, 23% less
FFs and half the DSPs compared to ours. Zhang et al. [41] reported an efficient
implementation that favors a ping-pong memory access to read/write the poly-
nomial coefficients from/to the block RAMs. Their approach avoids read/write
conflicts without the cost of reordering the coefficients. Indeed, our design oc-
cupies 2.3x more LUTs, but 1.4x less FFs which makes the overall resource
utilization in favor of [41]. Also, the maximum frequency of most reported works
is higher than ours which is 100 MHz even though all implementations are done
on the same Artix-7 FPGA. As for the latency of the NTT and INTT operations,
they are quite comparable to similar designs that use two butterflies. Regarding
the point-wise multiplication we report nearly half the clock cycles compared
to similar works. This is because the polynomial arithmetic unit does not com-
pute the last step of polynomial multiplication needed after NTT. It is left to
be implemented on the upper level. We also provide the resource utilization for
Hawk, Raccoon and Polka, but comparison to the literature was not possible
since there is no available hardware implementations that we know of.

A cautionary note, since the block RAMs used to store the coefficients are
shared among other higher level modules, they are not considered part of the
BRAM cost within the poly arithmetic unit in our design and in most state-
of-the-art works.

5 Conclusion

This paper presents a lightweight polynomial arithmetic hardware architecture
for post-quantum digital signatures and KEMs, suitable for low-cost and area-
constrained applications. Our approach uses an in-place NTT without reordering
of coefficients during the NTT and INTT operations, which reduces the complex-
ity and the area cost of the control unit. In addition, storing the NTT twiddle
factors in LUTs avoids occupying unnecessary BRAM footprint and reusing them
during INTT avoids redundancy. The proposed architecture also establishes a
straightforward address generation mechanism with simple conflict-free memory
access which further facilitates the usage of lower resources. For most algorithms,
our work utilizes fewer hardware resources than state-of-the-art lightweight im-
plementations.
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