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Abstract. This work performs a side-channel analysis on the Hybrid
Homomorphic Encryption cipher Elisabeth-b4. In particular, a Corre-
lation Power Analysis allows to recover the 2048-bit key with 35,000
traces. Mounting template attacks or using Machine Learning decreases
this number to 1,000. We then implement 2-share masking and shuffling,
which completely eliminates the leakage measure – a Test Vector Leakage
Assessment (TVLA) – and mitigates the Correlation Power Analysis and
template attacks. Using a Divide and Conquer Deep Learning approach,
we manage to bypass them but the number of required traces increases
to 250,000.
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1 Introduction

1.1 Context

We currently live in a world where the smallest Internet of Things (IoT) devices
are able to collect useful data on the field at low cost and are used in combi-
nation with the largest cloud computers, that have the computing capabilities
to process this data. This motivating process immediately raises privacy con-
cerns if the data sent by the IoT contains sensitive information. A discovery
from 2009 showed that Fully Homomorphic Encryption (FHE) could be used to
tackle this problem [15]. FHE provides confidentiality and arbitrary computa-
tion on encrypted data, which allow cloud servers to process sensitive data that
stays encrypted. While having practical realisations, Homomorphic Encryption
is a costly operation that still remains a challenge for IoT devices.

Recent work thus came up with the Hybrid Homomorphic Encryption (HHE)
framework, providing the same guarantees as FHE but shifting the overhead from
the IoT device to the server [30]. The framework consists in the IoT device send-
ing symmetrically-encrypted data and the server needing to transcipher it to get
the equivalent data homomorphically encrypted and process it. The overhead in-
duced by this transciphering heavily depends on the underlying symmetric cipher



used by the parties. In particular, not all operations have the same cost and mul-
tiple symmetric schemes have been designed for HHE with different applications
in mind [2,5,19,28]. In particular, as Deep Machine Learning inference is getting
widely popularized as a cloud service, researchers designed Elisabeth-4 [9] to
optimize for this use case.

1.2 Motivation

When designing a cryptographic cipher, researchers always provide theoretical
security guarantees that are mathematically sound but do not consider any im-
plementation details, to be as generic as possible. In reality though, practical
implementations on an electronic device often lead to a loss of security. Indeed,
information about cryptographic secrets, like keys, can be obtained by observ-
ing the environment of the device. This process is called side-channel analysis
and examples of the environment are timing [22], current consumption [23], or
electromagnetic radiation [12]. It is very powerful but often requires some sort
of physical access to the target device to observe the leakage.

Elisabeth-b4 is a good candidate for the emerging HHE but IoT devices
intrinsically suffer from physical access and it is thus essential to provide a secure
implementation of the algorithms running on those devices. Our work aims to
analyze the complexity of side-channel attacks on an IoT device and study the
efficiency of countermeasures.

1.3 Related Work

One year after its release, an algebraic attack compromised Elisabeth-4, demon-
strating its vulnerability to such methods [17]. In response, the original authors
proposed multiple different alternatives, including an adjusted cipher named
Elisabeth-b4 [20], specifically designed to resist the attack in [17]. Our work,
however, focuses on analyzing and attacking Elisabeth-b4 using a distinct ap-
proach – side-channel analysis – and demonstrates that, despite the modifica-
tions, the newer version remains vulnerable to this class of attacks.

To the best of our knowledge, we have not seen any research done on the
side-channel analysis of hybrid homomorphic ciphers and our work is innovative
in that sense. Another hybrid homomorphic cipher called FRAST [8], beating
Elisabeth-b4 in terms of both latency and throughput, has been designed after
the start of our work, but it still does not consider the threat of side-channel
analysis in its design, and our work could probably be extended to this cipher
as well. A differential fault attack was recently mounted on Elisabeth-4 [33] but
they did not study side-channel analysis either.

1.4 Contributions

Our work provides results of side-channel attacks using electromagnetic radiation
traces from Elisabeth-b4 executions. We show how to recover the 2048-bit key



with 35,000 traces with Correlation Power Analysis and with 1,000 traces using
a template attack.

By integrating known protections like masking [6] and shuffling [32], the
previously mounted Correlation Power Analysis becomes impossible and the
template attack is much more complex. By using multiple Deep Learning models
instead of templates, we still manage to recover the key by predicting the mask
shares and shuffling. Though, it increases the number of traces on the target
device to 250,000.

1.5 Outline

After a background on Elisabeth-b4 and side-channel tools in Section 2, we
describe our attack setup in Section 3 and show how we recover the entire key
from the algorithm using different attacks in Section 4. In Section 5, we describe
the countermeasures we implemented to increase the attacks’ complexity and
analyze their effectiveness in Section 6. We then present the use of Deep Learning
as a new attack method in Section 7. Finally, we conclude our work in Section 8.

2 Background

2.1 Homomorphic Encryption

A homormophic encryption scheme includes a plaintext space, a ciphertext space,
a pair of public-private key space and a circuit space. It provides the following
algorithms:

– The key generation KeyGen
(
1λ
)

for security parameter λ returns a public-
private key pair

(
HKpub, HKpriv

)
satisfying λ bits of security.

– The encryption HEnc
(
p,HKpub

)
for plaintext p and public key HKpub

returns the ciphertext c corresponding to the encryption of p with HKpub.
– The decryption HDec

(
c,HKpriv

)
for ciphertext c and private key HKpriv

returns the plaintext p corresponding to the decryption of c with HKpriv.
For correctness, Pr

(
HDec

(
HEnc

(
p,HKpub

)
, HKpriv

)
= p
)
= 1 must be

satisfied.
– The evaluation HEval

(
HKpub, C, c1, ..., cn

)
returns the encryption of circuit

C evaluated at the decrypted inputs, i.e., if ci = HEnc
(
pi, HKpub

)
, then

HEval
(
HKpub, C, c1, ..., cn

)
= HEnc

(
C (pi, ..., pn) , HKpub

)
.

The second and third provide confidentiality on the plaintexts and the last
provides certain computation on encrypted data. If the circuit C can be arbitrary,
then we call such a scheme a Fully Homomormphic Encryption (FHE) one and
it provides arbitrary computation on encrypted data.

Hybrid Homomorphic Encrypytion (HHE) A HHE scheme consists of a
FHE scheme with operations (HEnc,HDec,HEval) and keys

(
HKpub, HKpriv

)
combined with a symmetric encryption scheme with operations (SEnc,SDec)



and key SK. The client sends SKHE := HEnc
(
SK,HKpub

)
once at the very

start and then sends the symmetric encryption pSE := SEnc (p, SK) of input p
(instead of pHE := HEnc

(
p,HKpub

)
for FHE). The server can then retrieve pHE

by homomorphically evaluating the symmetric decryption circuit CSDec on inputs
pSE

HE
:= HEnc

(
pSE, HKpub

)
and SKHE: HEnc

(
CSDec (pSE, SK) , HKpub

)
= pHE,

an operation called transciphering.
The HHE scheme provides the same guarantees as FHE but removes the

overhead of performing any homomorphic encryptions on the client except one
on SK, which is ideal for IoT devices. The challenge lies in finding a symmetric
cipher whose decryption circuit is efficient homomorphically to reduce the over-
head from transciphering as much as possible. Elisabeth-4 and Elisabeth-b4
are examples of such an optimized cipher.

2.2 Elisabeth-4 & Elisabeth-b4

Elisabeth-4 [9] is a symmetric stream cipher operating in Z16. It encrypts one
plaintext element of Z16 (i.e. 4 bits) at a time by summing it with the keystream
generated by the algorithm depicted in Figure 1a. The latter consists of the
following two parts.

– We refer to the first part as Random Whitened Subset (RWS). A public
initialization vector (IV), is used as a seed to a foward secure PRNG that
selects a random subset of 60 elements of Z16 from the 256 of the key,
permutes them and adds a uniformly distributed whitening to each element.
This results in a vector of 60 elements of Z16 that we will call keyround
throughout the rest of the document.

– The keyround is then divided into 12 blocks of 5 elements called x1, x2,
x3, x4, x5 where each block is fed into the filtering function f depicted in
Figure 1b. The outputs of the 12 independent evaluations of f are summed
to get the keystream. All S-boxes are instances of Negacyclic Look-Up Tables
(NLUTs), i.e. S [i+ 8] = −S [i] mod 16 ∀i ∈ {0, . . . , 7} for a NLUT S of
length 16. Their first halves were generated taking the output of the SHA-256
hash of a string chosen by the authors.

The decryption algorithm consists in generating the same keystream using
the initialization vector and subtracting it to the ciphertext to get the plaintext.
Elisabeth-4’s key has a length of 256 elements of Z16, so 256 nibbles or 1,024
bits.
Elisabeth-b4 [20] is designed to mitigate the attacks against Elisabeth-4 dis-
covered by [17]. The design is very similar to Elisabeth-4. The differences lie
in the size of the key, which now has 512 elements, or 2,048 bits, and the size
of the keyround which has a length of 98 elements. The latter is now divided
into 14 blocks of length 7 that are fed to its adapted filtering function shown
in Algorithm 1. The S-boxes are also NLUTs and their first halves were also
generated taking the output of the SHA-256 hash of a string chosen by the au-
thors. The initial copy of the inputs on line 3 of the algorithm corresponds to



(a) Elisabeth-4’s encryption algorithm (b) Elisabeth-4’s filtering function

Fig. 1: Elisabeth-4 description

their manipulation when copying them in the function’s stack frame. The copy
is necessary because the function would modify the inputs in place otherwise.

2.3 Side-channel Analysis Tools

Points of Interests Faced with the very large number of samples present
in the traces, it is essential to identify and select the points that carry the
useful information for our attacks. Numerous methods have been studied [13] to
detect leakage regions, also called Points of Interests (PoIs). Examples of these
include Difference Of Means based method [7] (DOM), Signal-to-Noise Ratios
based method [25] (SNR), Correlation Power Analysis based method [25] (CPA),
Principal Component Analysis based method [3] (PCA), and Sum Of Squared
pairwise T-differences based method [16] (SOST). In our experiments, the most
effective one was the last. Its formula reads:

f [t] =
∑

s1 ̸=s2

(
Ms1 [t]−Ms2 [t]√

S2
s1

[t]/|Gs1 | + S2
s2

[t]/|Gs2 |

)2

(1)

where s1 and s2 are all the possible critical values, Gs is the set of traces asso-
ciated to s, Ms =

1
|Gs|

∑
ti∈Gs

ti, S2
s = 1

|Gs|
∑

ti∈Gs
(ti −Ms)⊙ (ti −Ms)

2.4 Evaluation Metrics

Rank The rank of a subkey hypothesis is the position of the correct value in
the corresponding vector of prediction probabilities sorted in decreasing order.
If the rank is 0, then the correct value is predicted with highest probability and
the prediction is correct. If the number of possible values the subkey can take is
K, a trivial attack consisting in uniformly selecting one of the K values yields
an expected rank of (K − 1) /2.



Algorithm 1: Elisabeth-b4’s filtering function
input : (x0, x1, x2, x3, x4, x5, x6) ∈ Z7

16

output: z ∈ Z16

1 begin
2 for j in range(7) do
3 x′

j ← xj

4 for j in range(3) do
5 x′

2j+1 ← x′
2j+1 + x′

2j

6 for j in range(6) do
7 yj ← Sj

(
x′
j

)
8 for j in range(3) do
9 z2j ← y2j+5 mod 6 + y2j

10 z2j+1 ← y2j+4 mod 6 + y2j+1

11 for j in range(6) do
12 zj ← zj + x′

j+2 mod 6

13 zj ← Sj+6 (zj)

14 for j in range(2) do
15 t3j ← z3j + z3j+1 + z3j+2

16 t3j+1 ← z3j+1 + z3j+3 mod 6

17 t3j+2 ← z3j+2 + z3j+3 mod 6 + y3j

18 x_perm← [5, 4, 3, 1, 0, 2]
19 for j in range(6) do
20 tj ← tj + x′

x_perm[j]

21 z ← x′
6

22 for j in range(6) do
23 uj ← Sj+12 (tj)
24 z ← z + uj

25 return z

Success Rate The success rate is the ratio of subkeys correctly retrieved by the
attacker. The same trivial attack for each element of the key yields an expected
success rate of 1/K. In the case of Elisabeth-b4, this is 1/16 = 6.25%.

3 Threat Model and Attack Setup

The very long key length – 2048 bits compared to the usual 256 bits – for this
stream cipher represents a new challenge in terms of side-channel analysis. After
considering a first threat model consisting of collecting traces directly on the
target device, we then assume a different one in which the attacker can access
a cloned component, where they can run any code. In both cases, the attacker
gathers thousands of traces, each encrypted with the same key, while seeds (IVs)
vary for each encryption.



We took inspiration from the authors’ implementation of Elisabeth-4 in
Rust1 to implement it in C. Adapting it for Elisabeth-b4 was straight-forward.
The PRNG was implemented by generating the byte stream from the output of
the ChaCha20 cipher, using the seed as the cipher’s key. The stream was pro-
duced by encrypting null plaintexts with null initialization vectors and subse-
quently used to produce numbers for the subsetting, permutation, and whitening
operations of Elisabeth-b4’s key. We embedded the compiled code on an Ar-
duino DUE, featuring an ARM Cortex-M3 32-bit processor operating at 84MHz.
In addition to the previous work on stream ciphers in [24], we show that it is
possible to attack 4-bit data words on a 32-bit processor.

By using the electromagnetic radiation with a dedicated probe instead of
the power, it is possible to focus on the CPU part in charge of code execution
only and eliminate other sources of noise (USB stack, analog part). Moreover,
as shown in [26], glitches in CMOS circuitry have a high-frequency component
which is more easily measurable in the EM field (a shunt resistor, for power,
acts as a combination of resistance, inductance, and capacitance at high fre-
quency). Finally, in modern processors, since nowadays dynamic power contin-
ues to dominate static power [29], it is in the interest of collecting the signal in
the high-frequency domain with an electromagnetic probe.

To improve the quality of the leakage signal, we also thinned the chip by the
back side, until it was about 100 µm long and moved the probe until we got the
best signal. We finally select the sampling frequency of the oscilloscope at the
value of 500 MS/s, by quantifying the collected values over 8 bits.

Indeed, measurements with a lower sampling rate showed that the amplitude
and the number of leaks in the signal decreased. In contrast, a greater sampling
rate produced new brief leaks, but this required the collection of a very large
number of points per trace and led to a dataset which was too large to manage.

Each time we collected a trace, we executed the target 10 times and aver-
age them to reduce the noise. The collected trace corresponds to the algorithm
executed to generate one keystream element of 4 bits as described in Section 2.2.

To evaluate the proposed methods, we collected four distinct sets of traces,
referred to as Datasets A, B, C, and D, referenced throughout this document:

– Dataset A: Collected without countermeasures. It is divided into two pop-
ulations of 125,000 traces each: one uses a fixed seed, while the other varies
the seed. Both populations use the same fixed key.

– Dataset B: Collected without countermeasures. It contains 256,000 traces,
each generated with a different seed but under the same fixed key.

– Dataset C: Collected with countermeasures and structured similarly to
Dataset A, with two populations of 125,000 traces each: one with a fixed
seed and the other with varying seeds. The seeds and keys are different from
those in Dataset A.

– Dataset D: Collected with countermeasures. It comprises 1,000,000 traces,
each generated with a different seed but under the same fixed key.

1 Available on GitHub

https://github.com/princess-elisabeth/Elisabeth/tree/master


The unprotected algorithm (Datasets A and B) runs in 160 µs, resulting in
traces of 80,000 time points, while the protected one (Datasets C and D) runs
in 400 µs, producing traces of 200,000 time points.

The machine mounting the CPA, template and ML-based attacks consists
of an AMD Ryzen Threadripper 7970X processor with 256 GB RAM, using
Python and NumPy, SciPy, scikit-learn. Our neural networks were trained on two
NVIDIA RTX 4500 Ada Generation graphics cards and six NVIDIA GeForce
RTX 2080 Ti graphics cards, using TensorFlow.

4 Attacks on an Unprotected Implementation

4.1 Trace Analysis

Fig. 2: Example of trace of Elisabeth-b4’s keystream generation

Figure 2 displays an example of a trace from Dataset B (unprotected). The
scale of the electromagnetic field amplitude correspond to mV within a multi-
plicative factor: collected samples are encoded on 16 bits, ranging from −32,768
to 32,767. We can already identify the RWS from the start to the red line, as
well as each of the 14 sequential executions – or rounds – of the filtering function,
separated by the black lines.

4.2 Attack Strategy

The adversary’s goal could either be to recover the plaintext or the symmetric
key. The key is more often targeted since it can be used to recover not only the
current plaintext but also future plaintexts. Also, as opposed to the plaintext,
the same key is used in multiple messages, giving the adversary lots of traces to
recover it. Therefore, the targeted critical values are the 512 key elements in our
case. Elisabeth-b4’s keystream generation leaks in two distinctive parts:



Random Whitened Subset (RWS) The key elements are directly manip-
ulated by the device to shuffle and whiten them. Even though the key is 512
elements long, only 98 are selected – and thus, leaked – during this procedure.
Filtering function The key elements are manipulated but are shuffled and
whitened. Since both operations are deterministically derived from the public
seed, they are reversible. The method to revert them is described below. Each
of the 14 different executions of the filtering function leaks information about 7
elements of the key, totalling in the same 98 key elements as during the RWS
from the previous paragraph.

We use Si ∈ {A ⊆ {0, . . . , 511} | |A| = 98} and Wi ∈ Z
98
16 to respectively

refer to the sample/permutation and whitening during RWS of trace ti. To get
prediction probabilities for the original key K ∈ Z512

16 from prediction probabil-
ities for the keyrounds ki ∈ Z

98
16, we revert the random sample, shuffling and

whitening as follows:

p
(
K [j] = k̇

∣∣∣ ti) =

{
p
(
ki

[
S−1
i [j]

]
= k̇ +Wi

[
S−1
i [j]

]
mod 16

∣∣∣ ti) , if j ∈ Si.

1
16 , otherwise.

Indeed, the key element is uniformly distributed if it has not been sampled
(i.e., j /∈ Si), as no information can be gathered from the trace. Also, note that
p (ki [·] = · | ti) ∝ p (ti | ki [·] = ·) because p (ki [·] = ·) = 1/16, a useful property
to compute probabilities of keyround elements from the templates. In both cases,
and even if we target both parts simultaneously, only 98 out of the 512 elements
of the key are used. This implies that, to recover the entire key, its 512 elements
must appear at least once. A strict minimum of ⌈ 512

98 ⌉ = 6 traces are thus needed
by the pigeonhole principle, but 33 in expectation.2

4.3 Test Vector Leakage Assessment (TVLA)

We perform a TVLA on Dataset A. It is shown in Figure 3, zoomed on the last
round of the algorithm – the other rounds are similar.

The red horizontal lines highlight a t-value of 4.5, which is the threshold
corresponding to a confidence level of 99.999% in our setting, with nearly 250,000
degrees of freedom at each time point. By disassembling the code and applying
a Pearson correlation calculation between the manipulated data and the trace,
we identify the leakage points associated with different colors in Figure 3. These
colors correspond to operations that we found leaked the most, such as the
output of the first round of S-Boxes for the red regions (Algorithm 1, line 7).

4.4 Correlation Power Analysis

Previous results showed that the Hamming Weight was a good model to
assess leakage. This model was thus retained for the attack. We targeted non-
linear operations, i.e. the S-boxes. S-boxes S0, S2, and S4 caught our attention
2 See Appendix A for more details.



Fig. 3: TVLA on last round of Elisabeth-b4

because they depend only on a single keyround element which corresponds to a
search space of 4 bits. Other S-boxes depend on up to six elements, corresponding
to a larger search space of 24 bits. Examples of correlations with the correct key
are shown in Figure 4. This step was performed on Dataset B.

Fig. 4: Correlation factor of the Hamming Weight of the output of S-box S4

An example of a graph showing the maximum correlation factor throughout
the trace for different hypotheses of a keyround element, targeting the output of
S-box S4 is shown in Figure 5. An interesting observation is that there are always
two distinctive correlation peaks: one for the correct key hypothesis k̇ and one
for k̇ + 8 mod 16. This increases the number of traces to distinguish the two
and thus increases the complexity of the attack. The phenomenon is explained
because the S-boxes are NLUTs, i.e., S4 [k + 8 mod 16] = −S4 [k] mod 16 and
the Hamming Weights of the respective outputs are thus heavily correlated.

We only used the output of S4 because it gave the best results. We only
considered the last two rounds for simplicity. Concretely, we correlate the second



Fig. 5: Example of maximum correlation factors across the entire trace for dif-
ferent hypotheses. Correct key element is 1.

to last round’s traces with values HW (S4 [x]) and the last round’s traces with
values HW (S4 [x

′]) with x, x′ ∈ Z16 hypotheses for K [Si [88]]+Wi [88] mod 16
and K [Si [95]] +Wi [95] mod 16 respectively. By removing the whitening, we
thus have a hypothesis for a key element.

As two different elements of the key are leaked in each trace (K [Si [88]]
and K [Si [95]]), we collected 256,000 traces so that we have about 1,000 traces
for each key element (Dataset B) and successfully recovered the entire key. We
expect that the number of traces required is divided by 7 when targeting all
14 rounds instead of the last two, involving about 35,000 traces. This number
could probably be even further reduced by also exploiting more information than
simply the output of S4, such as other S-boxes or the HW of the inputs at the
beginning of the rounds. We observe that the attack is feasible with a model
leakage based on 4 bits only (the HW of an S-box) even though the processor
is 32-bit. In our case, it is difficult to find a model on more bits, since every
operation is in Z16, but doing so could also reduce the complexity of the attack.

4.5 Template Attack

The objective of our template attack is to predict the values of the 98 keyround
elements. Compared to other PoI detection methods, SOST gave us the clearest
ones and were in accordance with the previously computed TVLA. We thus
compute 98 SOSTs, one for each of the 98 targeted keyround elements. Examples
of such SOSTs are shown in Figure 6. We notice in particular that keyround
values leak once during RWS and once during its respective round, validating
the claim in 4.2.

We build 98 · 16 = 1,568 templates during the profiling phase – one for every
possible value of every keyround element. Each template is defined over N = 40
points from the trace, chosen as the largest N values of the SOST corresponding
to the target element. The precise values of N was 5-fold cross-validated based
on the success rate.



Fig. 6: Example of SOSTs on top of a trace

During the extraction phase, we compute the 16 probabilities of each key-
round value for each of the 98 elements, follow Section 4.2 to revert the RWS
and select the Maximum-Likelihood Estimator for every j:

K̂ [j] = argmax
k̇∈Z16

∏
ti

p
(
ti

∣∣∣ K [j] = k̇
)
= argmax

k̇∈Z16

∑
ti

log p
(
K [j] = k̇

∣∣∣ ti) (2)

where we used that p
(
K [j] = k̇

)
= 1/16 ∀k̇ and applied the logarithm to tackle

numerical instabilities that arise when multiplying small probabilities together.
This method preserves the order of probabilities when selecting the maximum
due to the logarithm’s monotonic increase while staying numerically stable.

We also used Dataset B for this attack. When using 100,000 profiling traces,
this attack gives an average accuracy of 13.33 ± 0.20 % for keyround elements.
After applying the Maximum-Likelihood Estimator, we recover the complete key
with 1,000 extraction traces. The average rank of a key element is 0.005 at 1,000
extraction traces. To practically compute this number, we computed each key
element’s average rank across 100 sets of size 1,000 sampled from 10,000 traces
not seen during the training. We then averaged the ranks from all elements.

4.6 Machine Learning-Based Attack

Using Machine Learning is almost identical as with templates: For each one of the
98 targeted elements, we first select a subset of the trace using SOST, and then
train an ML model predicting its value between 0 and 15. Each model outputs
probabilities for each possible keyround value, we revert the RWS following
Section 4.2, add all the logarithms of probabilities and choose the highest one
as the final prediction. We tried different configurations of ML models:
SVMs [10]: We rapidly abandoned the use of SVMs due to their long training
times, independently of the kernel or of the regularization parameter.
Random Forests [4]: Using 5-fold cross-validation, the best choice of hyperpa-
rameters were to choose a subset of length N = 40 from the SOST, train 300
trees, let them grow indefinitely but have at least 6 samples left at each leaf.



Gradient Boosting [14]: Using 5-fold cross-validation, the best choice of hy-
perparameters were to choose a subset of length N = 60 from the SOST, iterate
for at most 300 iterations with the multinomial deviance loss, let each tree grow
indefinitely but have at least 6 samples left at each leaf. This method performed
best consistently.

Also using Dataset B and choosing Gradient Boosting with 100,000 profiling
traces results in 11.14 ± 0.18 % accuracy for keyround elements. We recover the
entire key with 1,500 extraction traces, performing slightly worse than template
attacks. We did not try any more complex models as our results were already
satisfactory. All our attack results are summarized in Table 1. The Baseline row
indicates the accuracy one would get with a trivial estimator that would select
a uniform random value for every keyround element.

Table 1: Overall attack results without countermeasures
Method # Traces Test element

accuracy (%)
Success rate

(%)
Profiling Extraction

CPA 0 ∼35,000 - 100

Template 100,000 1,000 13.33 ± 0.20 100
Random Forest 100,000 2,500 10.93 ± 0.17 100

Gradient Boosting 100,000 1,500 11.14 ± 0.18 100

Baseline 0 0 6.25 ± 0.00 6.25

5 Countermeasures Implementation

5.1 Masking

Masking is a countermeasure that has already been proven to exponentially
increase the attack complexity with respect to the number of shares used [6].
To protect a sensitive value s with M -share masking, we uniformly sample M
shares such that they all sum to s. This leads to the masking vector m ∈ ZM

16 ,
where

∑M−1
i=0 m [i] mod 16 = s. Then, the algorithm uses m instead of s and

the value of s is never manipulated directly.
Implementing this countermeasure means redefining all operations that use

sensitive values into ones that use masking vectors. In our case, the sensitive val-
ues are the 98 keyround elements and the operations that use them are additions
and S-box evaluations.

The addition of two masked values m1 and m2 that respectively correspond
to sensitive s1 and s2 is m3, where m3 [i] = m1 [i] +m2 [i] mod 16, such that
the corresponding s3 is s1 + s2 mod 16. The time complexity of the addition is
multiplied by M .



To evaluate S-box S ∈ Z
16
16 on sensitive s, we pre-compute a table S′ cor-

responding to the evaluation of S-box S for every possible share combination,
inspired by the implementation of [1]. What follows applies only for M = 2,
protecting against first-order attacks. For higher order attacks where M > 2,
we refer the reader to [31]. The new table is S′ ∈ Z

16×16
16 , where S′ [i1] [i2] =

S [i1 + i2 mod 16]− i1 mod 16 and we store S′ in memory instead of S. When
we want to evaluate it with masked m, we compute

[
m [0] S′ [m [0]] [m [1]]

]
=[

m [0] S [m [0] +m [1] mod 16]−m [0] mod 16
]
, a vector whose sum is the ex-

pected S [s]. The memory complexity is multiplied by 16 to store S′.
We chose M = 2 for performance reasons. An important improvement we

realized is that we could pack the 2 shares inside the same 32-bit word in memory
since they are 4 bits long, as elements of Z16. This has the advantage of being
able to add two masked values in a single addition instead of two and with
less memory fetches. Concretely, our packed number is a single word in memory
instead of a vector: m′ =

(
28 ·m [0]

)
∨m [1]. We use the notation [ · : · ] for bit

indexing. We thus have m′ [11 : 8] = m [0] and m′ [3 : 0] = m [1]. Additions are
defined as (the ∧ is used here to prevent overflows):

MaskedAdd (m′
1,m

′
2) := (m′

1 +m′
2) ∧ 0b0000111100001111, (3)

and S-boxes evaluations as:

MaskedSBox (S′,m′) :=
(
28 ·m′ [11 : 8]

)
∨ S′ [m′ [11 : 8]] [m′ [3 : 0]] . (4)

We mask every keyround element. Since there is also some shuffling (see
5.2), the masks do not appear in the same order during RWS and during the
rounds. We will thus refer to them respectively as mrws

j ∈ Z
2
16, j ∈ {0, ..., 97}

and mrounds
r,b ∈ Z2

16, (r, b) ∈ {0, ..., 13}×{0, ..., 6} (the bth mask of the rth round),
in order where they appear in the trace. There is thus a total of 392 variables
for mask shares, all ranging between 0 and 15.

5.2 Shuffling

Shuffling is another countermeasure that was thoroughly studied previously [32]
whose purpose is to randomize the execution order of independent operations.
This does not alter the outcome of the operations and an attacker now cannot di-
rectly know which operation is executed at which point in time. We implemented
it with Random Start Indices (RSI) [32], i.e., the operations are executed in or-
der but starting from a random index, for performance reasons. We shuffled the
following for Elisabeth-b4:

– The order in which the key elements are manipulated during RWS is indif-
ferent. We will refer to this RSI as prws ∈ Z98.

– The order in which the 14 executions of the filtering function are executed
is indifferent. We will refer to this RSI as pround ∈ Z14.

– For each round r ∈ {0, . . . , 13}, the order in which the block inputs are
copied is indifferent (Line 3). We will refer to the corresponding rth round’s
RSI as pblockr

∈ Z7.



– For each of the 7 remaining loops of the 14 rounds, the order in which they
are executed is indifferent. The RSIs take values respectively from Z3, Z6,
Z3, Z6, Z2, Z6, Z6 (see Algorithm 1).

Our shuffling countermeasure thus contains 114 different RSIs, but we target
only 16 of them (prws, pround, pblockr

) to retrieve the key.
The pseudo-code containing this countermeasure as well as the 2-share mask-

ing can be found in Algorithms 2 and 3. Note: we use the vector notation for
masks, but our implementation pack the shares in the same 32-bit word in mem-
ory, as described in 5.1.

The countermeasures bring a x2.5 time overhead, as traces now last 400 µs.

Algorithm 2: Masked and shuffled Elisabeth-b4’s keystream genera-
tion

input : Masked key (K0, . . . ,K511) ∈ Z512×2
16 , Sampling/Permutation

Si ∈ {A ⊆ {0, . . . , 511} | |A| = 98} and Whitening Wi ∈ Z98
16

output: Masked keystream z ∈ Z2
16

1 Function Perm(max):
2 rsi← rand () mod max
3 return

[rsi mod max, rsi+ 1 mod max, . . . , rsi+ (max− 1) mod max]

4 begin
5 // Masked RWS:
6 for j in Perm(98) do // Targeted RSI prws

7 mj ← MaskedAdd
(
KSi[j],Wi [j]

)
// Targeted masks mrws

j

8 // Masked rounds:
9 z [0]← rand () mod 16

10 z [1]← 0− z [0] mod 16
11 for j in Perm(14) do // Targeted RSI pround

12 z← MaskedAdd (z,Algorithm3 (m7∗j, . . . ,m7∗j+6))

13 return z

6 Attacks on a Protected Implementation

6.1 TVLA and CPA

To assess the impact of these countermeasures, we enabled them and mounted
the same attacks from Section 4. As a first step, we redo a TVLA, this time on
Dataset C. It is shown in Figure 7, zoomed on the last round of the algorithm
– the other rounds are similar. We observe that the first-order leakage of the
key elements has in this case completely disappeared. This is explained because
random mask shares are manipulated instead of the key elements. The leakage



Algorithm 3: Masked and shuffled Elisabeth-b4’s filtering function
input : Mask shares (m0,m1,m2,m3,m4,m5,m6) ∈ Z7×2

16

output: Mask shares z ∈ Z2
16

1 begin
2 for j in Perm(7) do // Targeted RSI pblockr

3 m′
j ←mj // Targeted masks mrounds

r,b

4 for j in Perm(3) do
5 m′

2j+1 ← MaskedAdd
(
m′

2j+1,m
′
2j

)
6 for j in Perm(6) do
7 yj ← MaskedSBox

(
S′
j,m

′
j

)
8 for j in Perm(3) do
9 z2j ← MaskedAdd (y2j+5 mod 6,y2j)

10 z2j+1 ← MaskedAdd (y2j+4 mod 6,y2j+1)

11 for j in Perm(6) do
12 zj ← MaskedAdd

(
zj,m

′
j+2 mod 6

)
13 zj ← MaskedSBox

(
S′
j+6, zj

)
14 for j in Perm(2) do
15 t3j ← MaskedAdd (MaskedAdd (z3j, z3j+1) , z3j+2)
16 t3j+1 ← MaskedAdd (z3j+1, z3j+3 mod 6)
17 t3j+2 ← MaskedAdd (MaskedAdd (z3j+2, z3j+3 mod 6) ,y3j)

18 m_perm← [5, 4, 3, 1, 0, 2]
19 for j in Perm(6) do
20 tj ← MaskedAdd

(
tj,m

′
m_perm[j]

)
21 z←m′

6

22 for j in Perm(6) do
23 uj ← MaskedSBox

(
S′
j+12, tj

)
24 z← MaskedAdd (z,uj)

25 return z

is further reduced due to the order of operations depending on those elements
that are consistently shuffled.

6.2 Template Attack on Countermeasures

In contrast, one can adapt the template attack to compute templates for the
RSIs and the mask shares instead of the keyround elements.

For RSIs, we have 98 templates for prws, 14 templates for pround and 7
templates for each of the 14 pblockr . For mask shares, we have 16 · 2 templates
for each of the mrws

j and mrounds
r,b . The total number is thus increased to 6,482.

For trace ti, the probabilities of keyround element ki [j], renamed here k̂j for
convenience, is computed from the ones of RSIs and mask shares as follows [27]:



Fig. 7: TVLA on last round of Elisabeth-b4 with 2-share masking and shuffling

pk̂j

(
k̇
∣∣∣ ti) = pk̂rws

j

(
k̇
∣∣∣ ti) · pk̂rounds

⌊j/7⌋, j mod 7

(
k̇
∣∣∣ ti) (5)

where

pk̂rws
j

(
k̇
∣∣∣ ti) =

97∑
p=0

pprws
(p | ti) ·

(
15∑

m=0

pmrws
j′ [0] (m | ti) · pmrws

j′ [1]

(
k̇ −m mod 16

∣∣∣ ti)) ,

pk̂rounds
r,b

(
k̇
∣∣∣ ti) =

13∑
pr=0

ppround
(pr | ti) ·

(
6∑

pb=0

ppblock
r′
(pb | ti)

·

(
15∑

m=0

pmrounds
r′,b′ [0] (m | ti) · pmrounds

r′,b′ [1]

(
k̇ −m mod 16

∣∣∣ ti))),
with j′ = j−p mod 98, r′ = r−pr mod 14, and b′ = b−pb mod 7. Just like

without the countermeasures, we then revert the RWS, add all the logarithms
of probabilities and choose the highest one as the final prediction for each key
element.

During the profiling phase, we compute the PoIs of every predicted variable
(RSI and mask share) using SOST, select the N highest time points, and build
the templates using those. The value of N is 5-fold cross-validated to be 1,000
for prws, 200 for pround and pblockr

, and 20 for mrws
j and mrounds

r,b . We used
675,000 profiling traces and 250,000 extraction traces from Dataset D and got
the results displayed in Table 2.

Even though we see that mask shares have an accuracy slightly better than
the baseline, it was not enough to reconstruct the complete key without a large
number of extraction traces. Indeed, only 20.7% of the key was recovered with
250,000 extraction traces.

We also tried predicting both shares together instead of separately, i.e. com-
pute 162 templates for every masked variable. Our validation accuracies in this
case were worse and it required more computing power as more than 50,000 tem-



plates needed to be computed. Overall, predicting each share separately would
give a more consistent performance.

We did not evaluate the ML-based attack with the countermeasures since
it already performed worse than the template without them. The latter thus
successfully mitigate the attacks that we were able to mount previously: CPA,
template attack and ML-based attack from Section 4. We will now study the
usage of Deep Learning as a more complex method to bypass them.

7 Deep Learning Application to Bypass Protections

7.1 Straightforward Monolithic Approach

Since our implemented countermeasures were very similar to the ones attacked
by Masure and Strullu [27], we adapt their MultiResNetSCA-1 to our use-case.
Their architecture predicts 34 variables each between 0 and 255 by taking a
trace of 15,000 time points and feeding it to a residual network, whose output is
then fully connected to each output variable through 1024-node hidden layers,
totalling in 137,396,064 trainable parameters.

In our case, we predict 408 variables, counting all RSIs and mask shares.
This large number of output variables and the large trace size (200,000 time
points) results in a neural network with 20,871,800,210 trainable parameters if
we use the exact same architecture. Even if we wanted to, we do not have the
computing capabilities to train such a gigantic model. To reduce the number of
parameters, we modify the architecture in three ways:

– We compute the second order Haar wavelet that divides our trace size by 4
while keeping most information of the trace [11].

– We select the parts of the trace that leak the variables using SOST on the
wavelets and concatenate them. Combined with the previous wavelet trans-
form, this reduces the number of input points to 12,150, a number similar
to the original architecture.

– We reduce the number of hidden nodes from 1,024 to 512 for RSIs and to
128 for mask shares.

These modifications result in an architecture with 188,046,738 parameters. A
graphical representation is shown in Appendix B. We kept the same loss function
– the categorical cross-entropy – and trained it during 30 epochs with a dataset
of 675,000 training traces.

The mean test accuracies for all predicted variables using Dataset D are
displayed in Table 2. It resulted in a success rate of 12.5 %, slightly better than
the baseline of 6.25% but not even reaching the performance of the template
attack from Section 6.2. We explain this poor performance due to the wavelet
transform discarding useful information found in higher frequencies. Indeed, the
PoIs identified by the SOST were less clear after the wavelet transform, compared
to the original traces. Another explanation could be that the model architecture
is not complex enough to capture the data structure and that the optimizer gets
stuck in a local minimum – our model is underfitting.



7.2 A Better Modular Approach

Instead of prematurely using wavelets to reduce our input space, we only detect
the PoIs of our variables using SOST and train multiple smaller – but with more
capabilities – models on subsets of the trace, following the Divide & Conquer
paradigm. Concretely, we train 20 models that have similar architectures but
with different input and output sizes.

– ResNetRWSPerm, taking the entire RWS of 19,850 time points and predicting
prws. This model has 11,497,410 trainable parameters.

– ResNetRoundPerm, taking the PoIs of pround of 700 time points and predict-
ing pround. This model has 4,389,998 trainable parameters.

– {ResNetRWS-0, . . . , ResNetRWS-3} each taking one quarter of the RWS of
4,860 (5,270 for ResNetRWS-3) time points and each predicting 48 (52 for
ResNetRWS-3) of the mrws

j . Splitting RWS in less than four led to models
too complex to be trained. These models have 63,107,168 (74,680,480 for
ResNetRWS-3) trainable parameters.

– {ResNetRound-0, . . . , ResNetRound-13} each taking round r ∈ {0, . . . , 13} of
1,400 time points (identified with the SOSTs of involved variables) and pre-
dicting their respective pblockr

and mrounds
r,b . These models have 26,213,447

trainable parameters.

This sums up to a total of 646,877,650 trainable parameters but that can
be trained on multiple GPUs in parallel. A graphical representation is shown
in Appendix C. We used 675,000 traces for training, 75,000 for validation and
chose the Adam optimizer with default values except an exponential decay β1 of
0.99 to escape local minima [21]. We early stopped the training by monitoring
the validation loss with a patience of 10 epochs.

ResNetRWSPerm converged after 3 epochs, while the rest after 10 to 15 epochs.
Mean test accuracies for all predicted variables are displayed in Table 2, requiring
250,000 extraction traces to recover the entire key.

Figure 8 depicts the expected rank of each of the 512 elements of the key for
different numbers of extraction traces. We practically computed the expected
rank of a key element for a given number of extraction traces using the same
method as in 4.5, sampling this time from 250,000 traces not seen during the
training. The average rank of a key element is 0.003 at 250,000 extraction traces.
We notice that few key elements still have a mean rank not steadily converging
to 0. We do not have a rational explanation for this behaviour, even though there
are only 4 of them out of 512 and that they are still below rank 1, meaning they
are still ranked between first and second in average.

8 Conclusion

Elisabeth-b4 offers a lightweight solution for preserving user privacy in cloud
computing as an HHE scheme. Our side-channel analysis showed that a 2048-bit



Fig. 8: 20 Neural Networks with 2-share masking and shuffling: Expected key
ranks

Table 2: Overall attack results with countermeasures
Method # Traces Mean test accuracies (%) Success rate (%)

Profiling Extraction prws pround pblockr mrws
j mrounds

r,b

CPA mitigated mitigated - - - - - 0

Template 675,000 250,000 69.96 65.92 58.01 7.71 7.37 20.7
Single NN 675,000 250,000 74.12 58.93 37.71 6.85 6.98 12.5
20 NNs 675,000 250,000 99.35 75.11 60.23 9.58 8.44 100

Baseline 0 0 1.02 7.14 14.29 6.25 6.25 6.25

key could be extracted with a limited number of traces. In side-channel anal-
ysis, non-linear operations typically exhibit the highest leakage, which we ob-
served as the CPA specifically targeted the S-boxes. These S-boxes, structured as
NLUTs with a minimal output size of just 4 bits, introduced uncertainty regard-
ing whether any exploitable leakage would be present. Nevertheless, our attack
proved successful even on a 32-bit processor. Moreover, other classic techniques
such as template attacks enabled key recovery with as few as 1,000 traces.

Using well-known mitigations like masking and shuffling, the previous attack
is mitigated but a stronger attacker can still train 20 independent deep neural
networks and acquire 250 times more traces on the target to retrieve the key.

As a direction for future work, we doubt that the same analysis could be
transposed to power analysis as we suspect most of our leaking information to
be found in higher frequencies of the leakage signal. With a lot of the leakage
coming from the RWS, we wonder whether the latter could be modified to
keep the security level while avoiding to unnecessarily manipulate all keyround
elements for every plaintext nibble. Instead, it could be thought of precomputing
the keyrounds in advance once per seed.



A Expected number of traces before every key element is
observed

The key has N = 512 elements and n = 98 of them are uniformly sampled at
each trace. We would like to compute the expected number of traces after which
all N elements are chosen. This problem is a variant of the Coupon collector’s
problem but instead of choosing one element with replacement at a time, we
choose n of them.

We model the problem as a discrete-time Markov chain where its states rep-
resent the number of key elements that were already selected. We are interested
in the expected number of steps to go from state 0 to state N . The probability
pi,j to go from state i to state j can be computed as:

pi,j =


(N−i

j−i )(
i

n−(j−i))
(Nn)

, if i ≤ j ≤ i+ n.

0, otherwise.

Indeed, we cannot decrease our number of selected elements so pi,j = 0 if
i > j. We can select a maximum of n elements at each step so pi,j = 0 if
j > i+ n. In the remaining case, we count the number of ways of selecting j − i
new elements from the N − i remaining to be selected, while also selecting the
rest (n− (j − i)) from the i already selected. We then divide by the total number
of ways of selecting n elements from N .

Our chain is an instance of an absorbing Markov chain, i.e., ∃i, pi,i = 1,
and its only absorbing state is N because we can always increase the number
of already selected elements except if all of them have been so. There exists a
useful theorem that allows us to compute the expected number of steps before
the chain is absorbed starting from any state [18]. In our case, we start at state
0. Applying the theorem shows that the expected number of steps is the sum of

the first row of (IN −Q)
−1 where Q =

 p0,0 . . . p0,N−1

...
. . .

...
pN−1,0 . . . pN−1,N−1

.

Replacing N with 512 and n with 98 leads to an expected number of steps
of 32.61, rounding up to 33.

B Adapted MultiResNetSCA-1 architecture

We adapted the MultiResNetSCA-1’s architecture, originally proposed by [27]
into the one shown in Figure 9, with f· (·) being probability density functions.

C Our 20 neural network architectures

ResNetRWSPerm, ResNetRoundPerm, {ResNetRWS-0, . . . , ResNetRWS-3} and
{ResNetRound-0, . . . , ResNetRound-13} are shown in Figure 10, with f· (·) being
probability density functions.
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(a) ResNetRWSPerm architecture. (b) ResNetRoundPerm architecture.

(c) ResNetRWS-0/.../3 architectures. (d) ResNetRound-0/.../13 architectures.

Fig. 10: Our 20 neural networks architectures.
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