
Taking AI-Based Side-Channel Attacks
to a New Dimension

Lucas David Meier[0009−0001−5970−0293], Felipe Valencia[0000−0001−6884−9340],
Cristian-Alexandru Botocan[0009−0000−8309−808X], and Damian

Vizár[0009−0006−4459−2951]

CSEM, Neuchâtel, Switzerland, {lucas.meier, andres.valencia,
damian.vizAr}@csem.ch botocan.christian@gmail.com

Abstract. This paper revisits the Hamming Weight (HW) labelling
function for machine learning assisted side channel attacks. Contrary
to what has been suggested by previous works, our investigation shows
that, when paired with modern deep learning architectures, appropri-
ate pre-processing and normalization techniques; it can perform as well
as the popular identity labelling functions and sometimes even beat it.
In fact, we hereby introduce a new machine learning method, dubbed
dimension 0, that helps solve the class imbalance problem associated
to HW, while significantly improving the performance of unprofiled at-
tacks. We additionally release our new, easy to use python package that
we used in our experiments, implementing a broad variety of machine
learning driven side channel attacks as open source, along with a new
dataset AES_nRF, acquired on the nRF52840 SoC.

Keywords: Profiled and Unprofiled Side-Channel Attacks, Deep Learn-
ing, Softmax Function

1 Introduction

Cryptographic algorithms are designed to ensure that secret input arguments
cannot be recovered given the knowledge of public data (such as ciphertexts
of a blockcipher) or even given some inputs considered private (such as plain-
texts of a block cipher). This is the purview of classical cryptanalysis, where
the cryptographic algorithm of interest is treated as a black-box. However, in
practical implementations on physical devices (software on microcontrollers or
hardware accelerators), the execution of these algorithms involves physical pro-
cesses. These processes can correlate with input values, making them observable
through physical variables. For instance, the power consumption when load-
ing a secret key correlates with its Hamming Weight, leaking key information.
Side-Channel Attacks (SCA) exploit such physical channels to recover secret
data, even from mathematically secure algorithms. Therefore, real-world secu-
rity requires cryptographic robustness and secure implementation against SCA,
especially in embedded systems that are often accessible to attackers.

2 L. D. Meier et al.

The study of SCA began with Timing Attacks [18] and evolved to more
complex methods such as Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) [19], Template Attacks [5], Welch’s t-test [35], and Correlation
Power Analysis (CPA) [4]. SCA techniques are classified based on adversarial
control (passive or active), observed variables (i.e., power, electromagnetic ra-
diation, timing, etc.), exploitation methods (i.e., statistical analysis, machine
learning, etc.), and the use of the profiling phase. This paper focuses on passive
power analysis attacks using machine learning, both profiled and unprofiled.

Artificial Intelligence (AI) proved to be very effective in SCA. The use of
Machine Learning (ML) in SCA began in 2011 [13], and deep learning (DL) soon
became popular for overcoming SCA countermeasures that resisted traditional
statistical attacks, including template attacks [21]. While other ML methods like
SVMs, decision trees, random forests, KNNs, and k-means were explored, deep
neural networks (DNN) have shown the best performance [12]. Recent works
have gained insights into the role of various NN components to in the efficacy of
DNN-based SCA [42], optimized NN architectures for faster learning and better
key recovery [39], and applied various deep learning techniques to enhance attack
performance [15, 41, 11, 28, 40, 31].

The power of ML-SCA (ML) attacks based on NNs depends heavily on the
selection of model hyperparameters, such as network topology, activation func-
tions and learning rate. One of these critical hyperparameters is the choice of the
leakage function. The two main options from the literature are either Hamming
Weight (HW) labelling function or the identity (ID) labelling function.

The experiments of existing works investigating the use of HW labelling
have suggested that models with ID labelling are capable of results that surpass
what can be achieved with HW. For example, Picek et al. show that HW la-
beling suffers from the class imbalance problem [29], which can degrade model
performance. In the study by Benadjila et al. [2], it was shown that during hy-
perparameter searching, no parameters result in a successful attack on an MLP
model using HW labeling, whereas at least one successful attack is possible with
ID. Following these finding, the popularity of ID labelling has exceeded that of
HW, with works such as those by Wouters et al. [39] and Zaid et al. [42] fo-
cusing on attacks using only ID labeling. Recent works that used both labeling
functions seemed to confirm the ID labeling superiority. For example, Rjisdijk
et al. [31] reported superior results with ID labeling in an SCA study using RL
techniques. Similarly, Kerkhof et al. [14] found that a new SCA loss function
performed better with ID labeling than HW across multiple datasets. Finally,
a recent study on the ASCAD datasets by Egger et al. [8] considered the HW
leakage model for classical CPA attacks, but relied only on the Identity labelling
for ML attacks.

All in all, the results published so far show HW labelling rather unfavorably,
which resonates with the more frequent use of ID labeling in the more recent
works. Yet, the existing evidence may not be sufficient to designate ID labeling
as a generally superior option, as no works have experimentally verified efficacy
of HW labelling on the modern DNN architectures, nor have there been any

Taking AI-Based Side-Channel Attacks to a New Dimension 3

new attempts to overcome the class imbalance problem since 2019 [29]. At the
same time, the interest in having a more up-to-date comparison between HW
and ID labelling functions is not only purely academic. HW labeling allows to
mount practical attacks targeting intermediate variables of 16, 32 or more bits,
while the same using ID would incur impractical computational and storage
complexities [1, 22].

In this paper, we set out to close the gap between the amount of recent re-
sults ID and HW labelling, and seek to answer the question: "Can HW labelling
function match or out-perform ID with recent DNN models and suitable addi-
tional techniques?" For that, we use state-of-the-art models and datasets from
the ASCAD family [2], which have different levels of security (masked implemen-
tation and jittering). A major contribution of our work here is a new DL method,
which allowed models with HW labelling to match, and sometimes outperform
the same model using ID labelling. The new method consists of transposing the
matrix containing a model’s output logits for multiple input traces before the
softmax function is evaluated.1

Contributions. Our contribution is threefold. First, we introduce a new DL
method for SCA called dim0, which can outperform state-of-the-art balancing
techniques on Hamming Weight labelled datasets, beat state-of-the-art using
the easier identity labelling and has the potential to greatly improve unprofiled
attacks as well. Second, we publish a new ML python-based package implement-
ing a variety of the state-of-the-art ML-based SCA techniques that is easy to
use and easy to extend.2 Last, we release our home-made SCA dataset called
AES_nRF acquired on the nRF52840 SoC for an unprotected implementation
of AES. AES_nRF contains 47.5k profiling traces with random keys and 2.5k
attack traces with fixed key.

2 Preliminaries

2.1 Notation

Throughout this document, we denote vi or v[i] as being the i -th entry of a
vector v. Matrices are bold, capitalized and in italic, as M. Let Nc denote the
number of classes, Np and Na the number of profiling and attack traces, Nb the
number of traces in a batch (batch size) and Ns the number of samples in a trace.
Indexes t, c and e will refer to a trace, class and epoch number respectively.

2.2 Side-Channel Attacks

Side-Channels Attacks (SCA) are attacks that target the implementation instead
of the mathematical structure of a security algorithm. They use side-channel
information (timing, power, cache memories, etc.) that depends on secret values.

1 In other words, we change the dimension, along which the softmax is computed.
2 The MLSCAlib is available on this link https://github.com/csem/MLSCAlib

4 L. D. Meier et al.

To mount an attack the adversary 1) creates a model to estimate side-channel
information as a function of secret values, 2) applies the function to multiple
secret values hypothesis, then 3) measures the side-channel information from
the target device, and finally 4) discriminates incorrect secret values hypothesis
comparing estimations with measurements [34]. The comparison can be made
using means difference, correlation, mutual information, t-test [35], etc. The
estimation model can be created with measurements of a controlled device, in
this case it is a profiled attack, otherwise it is an unprofiled attack. In some
profiled attacks the model is constrained to use most important time samples or
Points Of Interest (POI). Machine learning can be used to find the POI, create
the estimation model and/or to discriminate hypothesis [24].

2.3 AES

AES (Advanced Encryption Standard) [10] is a block cipher that, given a plain-
text of 128 bits and a key of 128, 192, or 256 bits, produces a ciphertext of 128
bits. The decryption algorithm of AES recovers the plaintext given a ciphertext
and a key. AES is an iterated block cipher that expands the key into several 128-
bit round keys and iteratively applies a round function to the plaintext and a
round key. The round function is composed of four transformations: addRound-
Key (AK), subBytes (SB), shiftRows (SR) and mixColumns (MC), where the
state is represented as a matrix of 4x4 bytes. SubBytes transformation is an
invertible non-linear byte substitution (substitution box or Sbox) applied byte-
wise on the AES state. The remaining transformations are linear. The last round
does not have mixColumns and is followed by an xor of the final round key. The
number of rounds depends on the key length.

2.4 Leakage Function

The attacker does not directly learn the key value from the traces. Instead, it
targets an intermediate value of the AES encryption (i.e., typically, the 8-bit
output or input of the Sbox operation) and uses a specific leakage function for
evaluation. In SCA, the leakage function is the same as the labeling function
in machine learning since both functions map data to a form that can be used
for analysis. A common option for labelling is the identity function (ID) which
represents the actual byte value of the output, resulting in 256 different classes.
Another option is the Hamming Weight (HW) of the output value. This usually
works well since the power consumption of a computation is directly related
to the number of bits set to one or zero. However, this gives rise to a class
imbalance: the classes 0 and 8 are only reached through a single possible (Sbox)
output value, whereas the class 4 is linked to 70 values. As a consequence, the
rare classes are more informative than others (label 0 and 8 can only be produced
by one key given a plaintext). Besides, physical observations of traces with a HW
value 3,4 or 5 tend to look the same, while a trace with HW 0 and one with HW
8 are easily differentiable, as shown by Fan et al. [9] on their Figure 5 plotting
the HW-two-dimensional distribution of power consumption.

Taking AI-Based Side-Channel Attacks to a New Dimension 5

2.5 Machine Learning

Classification using machine learning (ML) is defined as training a model to
learn from the input data features, such that it classifies the input and divides
it into discrete classes. In the SCA context, we have as a training (profiling)
dataset the side-channel traces from a device with known inputs and keys, each
labeled with the associated intermediate value or key byte. After training, the
model helps predict secret keys by allocating probabilities to each class of traces
in the testing dataset. This inference process is also called the attacking phase.

Multi-Layer Perceptron. The MLP contains multiple layers of perceptrons.
A perceptron is represented as a function f(x) = wTx+ b, where the trainable
parameters w, b are called weight and bias term. The model is composed of an
input layer, hidden layers in the middle of the network, and an output layer. An
activation function (often RELU [25] or SELU [17]) is applied to the output of
each perceptron to add non-linearity to the model.

Convolutional Neural Networks. Convolutional Neural Networks (CNN)
combine data processing operations (e.g., convolutions, pooling, batch normal-
ization, etc.) with a final Multi-Layer Perceptron layers (also called a fully Con-
nected Layer in this context). Mathematically, the convolution is expressed as
xi+1[n] =

∑Nf

k f [k]xi[n−k], where f [n] represents a filter with Nf elements and
xi the output of layer i (or the input trace for i = 0).

Logits. Logits are the raw, unnormalized output values produced by the last
layer of a neural network, such as an MLP or CNN, before applying an activation
function. These values represent the model’s confidence scores for each class.
There is a one-to-one correspondence between the classes and the logits.

Softmax. In order to turn the logits into a probability distribution, the softmax
function is used: softmax1(V , t, c) = (eVt,c)/(

∑Nc−1
j=0 eVt,j), where V represents

a Nb ×Nc matrix of logits, t the input number and c the class index. For each
input, the sum of the probabilities over each class sums up to one.

Loss Functions. The loss function measures the discrepancy between predicted
classes and real classes. We use Negative Log-Likelihood (NLL) as loss function
because it is asymptotically equivalent to maximizing the Perceived Information
(PI), which at the same time is the lower bound of Mutual Information (MI).
Training with NLL is an efficient estimation of MI [24].

Its definition is Lnll =
1
Np

∑Np

i=1 − log2(ỹi) yi, where yi are the labels, ỹi are
the model’s prediction w.r.t the input vector Ti and the model parameters.

Batched Learning. In most of the cases, the training data is given in batches
to the model in order to reduce the instantaneous memory consumption. The
batch size is typically in the order of one hundred traces.

2.6 Confusion Matrix

The confusion matrix is a matrix whose vertical axis designates the ground truth,
i.e. the real classes, and the horizontal axis is the actual prediction for each class.

6 L. D. Meier et al.

It shows which classes the model predicts correctly. The value Mi,j counts the
samples from class i that were classified to class j by the model. When depicted
graphically, we should see a diagonal shape (from top left to bottom right) in the
confusion matrix if the model performs well. In case of imbalance, we may see
vertical lines on common classes. Formally, the i-th row of the Nc×Nc confusion
matrix M is defined by: Mi =

∑Na

j=0 1{yj = i} ·model(Xj)/
∑Na

j=0 1{yj = i},
where Na is the number of traces in the attack dataset matrix X, y is the label
vector for the attack traces and model the trained machine learning model.

2.7 Model Sensitivity and Unprofiled Attacks

Mainly used for unprofiled attacks, what we call the model sensitivity is the
analysis of which part of an input trace is being used at which intensity by the
model to make a prediction. In ML-based unprofiled attacks, the correct key
guess is distinguished from wrong key guesses using a metric. This metric may
be the training or validation accuracy, or even the model sensitivity [23, 33, 38].
The underlying assumption of this method is that under a correct key guess, the
model will be able to find the PoI of the traces and learn from that. In the other
hand, a wrong key guess will lead to randomized labels, which will hinder the
model from learning anything (inc. PoI) from the trace. In the current work, we’ll
use the model sensitivity [23, 38] computed at each epoch and accumulated. At
the end, we plot the absolute value and elect the key guess leading to a sensitivity
with the highest peak as being the right key guess.

Formally, the model sensitivity is defined as Sinput[s] =
∑Na

t=1
∂LTt

∂ys
× Tt,s, for

s ∈ {1, . . . , Ns}. The first quantity in the sum is the partial derivative of the loss
with regard to the s-th sample variable (ys) for the t-th trace of the training set
(Tt). Tt,i corresponds to the value of the t-th trace at time sample s.

3 A New Dimension

A neural network’s output layer consists of neurons, one per each possible pre-
dicted class, outputting so-called logits. The higher a value of a logit, the more
strongly is the associated class suggested by the NN for the given input sample.
To normalize the output of the NN and make it consistently comparable across
samples and between the individual logits, the softmax function is typically ap-
plied to the output logits of a NN for a single sample. Softmax transforms a
vector of k real numbers into a distribution over k classes, i.e., a vector of k real
numbers from the interval [0, 1] that sum to 1, yielding pseudo-probabilities for
each class given the sample. When the NN outputs are arranged into a matrix (a
row holding the logits for a single sample), the softmax function is thus applied
row by row. In a manner of speaking, the softmax is computed along the dimen-
sion 1 of the matrix (provided we index the dimensions from 0).3 This section

3 The naming comes directly from the PyTorch library. PyTorch’s softmax function
has a dimension argument, which can be set to either 0 or 1 for a 2D input.

Taking AI-Based Side-Channel Attacks to a New Dimension 7

describes our newly proposed method, based on applying the softmax function
to the columns of the same matrix instead, computing a distribution over traces
for each NN output class.

3.1 Definition

Throughout this paper, we refer to dimension 1 (dim1) or dimension 0 (dim0)
as being the dimension argument of the softmax function applied on the output
layer of a deep learning ML model, during the training and attacking phases.
Formally, the softmax on dimension 0, denoted softmax0, is defined by:

softmax0(V , t, c) =
eVt,c∑Nb

j=0 e
Vj,c

(1)

where V represents the Nb × Nc logits matrix, t the trace number, Nb the
number of traces in the batch and c the class index. By definition, dim0 re-
quires at least two input samples per batch to obtain a non-trivial output. The
softmax0(V , t, c) only depends on Vi,c for i < Nb and a fixed class index c.

Proposition 1. During inference, a model using softmax0 will consider each
class separately. During training, a model using softmax0 can not increase the
score of the same class for every input sample in a given batch between epochs.
An increase of the normalized score for a given class input always results in the
decrease of the normalized score for the same class in one or more other input
samples of the same batch.

Corollary 1. During inference, the normalized scores for the different classes
output by a model using softmax0 for a given sample will not preserve the ratios
between the raw class scores, mitigating the logits’ inter-class bias. During train-
ing, a model using softmax0 will elect best input representatives for every class,
giving increased consideration to rare classes in imbalanced dataset scenarios.

3.2 Outline

Section 3 will further explore and experimentally verify Proposition 1. Section 3.3
will show that these targeted classes have more impact in the mathematical key
derivation itself. Section 3.4 will demonstrate that choosing an optimizer which
allows to optimize each weight on its own maximizes the dim0 performance.
Section 3.5 will elaborate on the rationale leading to the conclusion of Propo-
sition 1. At last, we point to general limitations and recommendations for the
dim0 approach.

3.3 Easily Classifiable Traces Have More Impact

Let’s see why under dim0, the key ranking algorithm, combining each trace’s
prediction by the ML model to deduce the most probable secret key, will give
more importance to traces for which the model has a greater level of certainty.

8 L. D. Meier et al.

First, it is important to make the observation that an inference done with
dim0 will assign a probability distribution over the traces (in the batch) for each
class. This means, for class 0, each trace will be assigned a probability of being
of class 0, these probabilities summing to 1 over all traces. These probabilities
could also be thought of as a measure of how well each of these traces "represent"
class 0. Consequently, when we sum such probabilities (we’ll call it class-scores)
over all classes for a given trace, the result will not be equal to 1. For example, a
trivial prediction assigning the same class-score for each class will lead to a sum
of Nc/Nb for any trace, where Nc is the number of classes and Nb the batch size.
As soon as the model starts to train on a particular class, the probability over the
traces will diverge from 1/Nb for each trace, and consequently traces whose class
the model choose to train on will have a higher expected sum of class scores than
other traces. As we will see in Section 3.5, the model can chose to target easily
classifiable traces (e.g. of label 0, 8 with HW labelling). Hence, we expect such
traces to have a higher sum of class-scores. Classes which are difficult to train on
will tend to keep their default 1/Nb probability assignment over each trace. We
conducted an experiment on our AES_nRF dataset to confirm this claim. After
a successful training using dim0 and a batch size of 50, we computed the sum of
each trace class-scores for each batch grouped by their true label and computed
the mean value. The expected sum of class-scores is hence Nc/Nb = 0.18. We
experimentally obtained these class-scores means during inference, for traces of
label 0 to 8: [0.2622, 0.2245, 0.2038, 0.1871, 0.1721, 0.1712, 0.1707, 0.1732, 0.1792].
As we see, traces whose true label value is 0,1,2 or 3 tend to have a higher class-
score. The model had chosen to target on these classes. This means, traces of
true label 0,1,2 and 3 will have a bigger impact during the secret key derivation,
which blindly sums each of the potential key’s class score (where the key is
derived from the plaintext and the given class) for each trace-plaintext input.

3.4 Optimizers

In the context of machine learning, an optimizer is a mathematical algorithm
used to adjust the parameters of a model in order to minimize the error in its
predictions. The optimizer iteratively updates the model’s parameters based on
the gradients of the loss function. How the updates are performed given the
gradient values depends on the type of optimizer. In fact, dim0 allows a model
to handle each class separately. But this effect is taken to its full potential if the
optimizer in turn allows for a per-class (or per-weight) tuning.

We now compare five different optimizers and how their behavior adapts
when confronted to a dim0 model.

Nesterov [27] is an optimizer that works like a Stochastic Gradient Descent
(SGD) with momentum but additionally regulates the momentum by ap-
proximating the values of parameters in future updates. SGD, with momen-
tum itself, computes the gradient of the loss function by considering only
one (or a subset) of the input traces to compute the gradient to reduce the
computational cost. The momentum adds memory to the learning process,

Taking AI-Based Side-Channel Attacks to a New Dimension 9

meaning that we add a fraction of the previously computed gradient to the
current one.

Adagrad [7] Its learning rate tends to vanish because it is inversely propor-
tional to the sum of all the past squared gradients.

Adadelta [43] It improves upon Adagrad by only considering a subset of the
previous squared gradients.

RMSprop It improves upon Adagrad by dividing the learning rate by an ex-
ponentially decaying average of squared gradients, which should solve the
learning rate vanishing problems.

Adam [16] It improves upon Adagrad and RMSprop by storing an exponen-
tially decaying average of past gradients in addition to the exponentially
decaying average of past squared gradients.

Except for Nesterov, these optimizers are adaptive methods, meaning they
have, for each batch, an adaptive learning rate for each parameter. As a result,
parameters associated with low-frequency features tend to have larger learning
rates than parameters associated with high-frequency features. For example, the
gradient descent formula of Adam is:

θe = θe−1 − α
m̂e√
v̂e + ϵ

(2)

with m̂e = me

1−βe
1
, me = β1me−1 + (1 − β1)ge, v̂e = ve

1−βe
2
, ve = β2ve−1 + (1 −

β2)g
2
e , and where e is the current epoch, θe the parameters at epoch e, ge the

gradient, α the learning rate, β1 and β2 the exponential decay rates for the
moment estimates, ϵ a small constant, me the first moment estimate, ve the
second moment estimate, ge the gradient of the loss function.

The division m̂e√
v̂e+ϵ

from Equation 2 ensures that each parameter has its own
learning rate. Dividing by

√
v̂e + ϵ will make the optimizer adjust the learning

rate for each parameter based on the historical gradient information. Parameters
with smaller gradients (indicating more stable or low-frequency features) will
have their updates scaled up, ensuring they receive sufficient updates (we use
the term adaptive if the optmizer has this property). This is because the learning
rate is scaled inversely with the square root of the sum of the squares of past
gradients. Additionally, ϵ ensures that the learning rate does not vanish entirely
for any parameter.

Some adaptive optimizers, such as Adam, additionally have an exponentially
decay of the sum (or average) of past gradients (see β1 and β2), which helps in
preventing the learning rate from becoming too small.

As a conclusion, we make the distinction between adaptive and non-adaptive
optimizers (e.g. SGD or Nesterov). Adaptive optimizers might use exponential
decay (as in Adam or RMSProp) or not (e.g. Adagrad, Adadelta).

Using dim1 and HW Labelling In this paragraph only, we’ll use softmax1

for training and try softmax0 for attacking. Independently from the optimizer
we choose to use on an imbalanced dataset, the dim1 model will be biased

10 L. D. Meier et al.

(a) Confusion matrix dur-
ing training on dim1.

(b) Confusion matrix on
evaluating with dim1.

(c) Confusion matrix on
evaluating with dim0.

Fig. 1: Confusion matrices for training/evaluating on dim1/dim0. The training for the
middle and the right-hand side figures have been done with dim1. Y-axis: true classes.
X-axis: predicted classes. Yellow/light: high probability. Dark/blue: low probability.

towards the more common classes. The learning will stall or be slowed down
for rare classes. Figure 1 confirms this claim experimentally. As we see, during
training on dim1, the model is biased towards the common class (i.e. there is no
diagonal to be seen, only a straight yellow line for class 4). During evaluation,
this bias persisted. However, using dim0 at inference, we observe that the model
was able to train a bit on the rare classes with dim1 during training. In fact,
dim0 during inference will remove the inter-class bias and consider each class
separately. In this scenario, the model correctly picks the traces closest to class 0.

3.5 Per Class Optimization

A ML model chooses to adapt its weights following the steepest curve of the gra-
dient of the loss function during the optimization. In other words, the model al-
ways use the easiest way to optimize itself. In the context of imbalanced datasets,
a model with dim1 will assign higher probabilities for common classes to reduce
the loss. With dim0, this doesn’t happen as for each class the probabilities over
the traces in a batch must sum to one. The loss related to common classes is
nonetheless high, but it can only be minimized effectively by training on other
classes. In turn, if any of the less common class is easier to train on than oth-
ers, it will focus on that particular class (following the steepest curve of the loss
function gradient). In the SCA context, it is known that rare classes are easier to
distinguish than common classes (as mentioned in Section 2.4). The model will
hence focus on these rare classes to minimize the overall loss. What is more, in
the SCA context, rare classes happen to be the most informative ones: a trace of
class 0 can only be linked to one secret key. Traces of class 4 lead to 70 potential
secret keys (refer to Section 2.4). Therefore, using dim0 allows a model to train
to recognize rare classes more successfully, which in turn significantly improve
the narrowing-down of the candidate key pool. We experimentally tested this
claim to see if our model indeed prioritizes the rare and easily classifiable classes
over the common classes. To that end, consider Figure 2. In this Figure, the
y-axis represents the mean value of each logit during training. The x-axis is the

Taking AI-Based Side-Channel Attacks to a New Dimension 11

Fig. 2: Mean logit value for each class. Since we used the HW labelling, light green
lines stand for rare classes. The darker the line, the more common is the underlying
class (label 4 is the dark line, label 0 and 8 are the two lightest). We consider the logits
of the first batch of each epoch, obtained with CNN_exp and our own AES_nRF
dataset.

epoch number. Each class (logit) is represented by a different line. The model
used is the CNN_exp with AES_nRF dataset. The mean value of each logit has
been calculated using the first batch (i.e., hundred traces) at each epoch. We
averaged ten runs, plotting the mean and a 90% confidence interval.

In line with the expected behavior of a model trained with an imbalanced
dataset, based on Figure 2, we observe that a dim1 models’ logits are ranked
in order of occurrence of the underlying class. This could be confirmed for all
optimizers (not shown). The most common classes lie above the others, and the
rare classes are in the bottom part. Though the figure only shows Adam on
dim1, we noticed a slight difference in behavior for the Adam and RMSprop
optimizers as compared to the others, in that one of the rare classes (actually
class 0) keeps dropping. This aligns with what was observed in Figure 1c: class 0
yielded a better prediction than class 8. Apart from that, the logits do not seem
to change much as the epoch increases: this confirms the expected behavior, the
model seems to stall.

From Figure 2, we observe that with a dim0 model, the logit’s behavior
strongly depends on the optimizer:

Adagrad and Adadelta They stabilize after a few epochs and change espe-
cially little afterward. But they are more or less located in the same ampli-

12 L. D. Meier et al.

tudes (the confidence intervals are large and interfere with each other). The
model does not target a specific logit more than others across runs.

Adam and RMSprop Logits related to rare classes increase faster than the
other. This crucial observation confirms our claim that a per-class optimiza-
tion is possible under dim0.

Nesterov Using dim0 does not yield interesting results. This non-adaptive op-
timizer was not able to take advantage of the dim0 properties.

Mathematical Insights The generic gradient descent algorithm, based on
Equation (2), stipulates that the weight are adapted at each epoch as a function
of the gradient of the loss function, a possible regularization, and the learning
rate (which is set by the optimizer). The observation that logits related to rare
classes increase faster than the others can be caused by either of these three
ingredients. However, in our case no regularization is applied. Moreover, the
gradient of the loss function is expected to be higher for common classes and
not rare classes. This is a consequence of the Lnll (see Section 2.5): as each sample
in the input dataset contributes for the same, the gradient for the common class
will be higher.

As a conclusion, only the learning rate can be the root cause of privileging a
rare class during training over a common class. Here, having adaptive learning
rates in the optimizer, such as in Adam, RMSprop, Adagrad and Adadelta, seems
to be necessary for the learning rate of rare classes.

3.6 Considerations

Choosing the Right Batch Size A new hyperparameter has to be taken into
account when doing ML-based SCA with dim0 : the batch size. In fact, the new
softmax Equation (1) on dim0 depends on the batch size.

If the batch size is too small, some classes may not have a trace related to
it, or would be insufficiently represented in certain batches and the model will
mostly have to train on unrelated labels. This is because the model looks at each
class separately. As a consequence, the model will overfit on the training dataset.

Using a reasonable batch sizes (at least 50) is recommend to mitigate the
effects mentioned above. Section 5 proposes some countermeasures in case the
number of attack traces is too small to form a complete batch.

Based on the previous observations, we also verified the influence of the
batch size on performance in dim0 on a public dataset using 110’000 traces
from ASCAD_variable with ID leakage model for profiling and 10’000 for at-
tacking. The CNN_best model was employed for these experiments, trained for
250 epochs with the RMSprop optimizer at a learning rate of 10−5. We tested
the following batch sizes: [50, 200, 700, 1000, 2000]. Figure 3 indicates that the
model performed best with a batch size of 1000. The next best performances
were achieved with batch sizes of 2000 and 700, respectively. With a batch
size of 1000, the model achieved a GE of 1 within the 250 epochs. No other
batch size reached this level of performance within the same number of epochs.

Taking AI-Based Side-Channel Attacks to a New Dimension 13

0 50 100 150 200 250
Number of epochs

0

50

100

150

200

250

M
ea

n
ke

y
ra

nk

ASCAD_variable - CNN_best_dim0

batch = 2000
batch = 1000
batch = 700
batch = 200
batch = 50

Fig. 3: Batch size influence on the dim 0 model.

However, we must point out
that in this case dim0 did
not surpass the dim1 state-
of-the-art, which can suc-
cessfully break ASCAD vari-
able with only 1000 traces in
37 out of 60 cases [8]. This
suggests that changing the
batch size might not be the
only variable to re-optimize
when switching the dimen-
sion of the softmax function,
and emphasizes the need to
clarify dim0’s needs and strengths in future research.

Similarities with Bayesian MAP Approach Dim0 may be reminiscent of
the Bayesian attack, as both compute overall class-scores by combining the class-
scores from all leakage samples for every class. In the Bayesian attack, one does
this using the Bayesian trick, necessitating to treat the distribution of samples
(leakages) as statistically independent; the extended version of the paper by
Standaert et al. [36, 37] and its Theorem 1 for example assumes independence of
leakages. This assumption is, however, not verified in practice as they all depend
on the same hardware and software implementation of the cipher.

Using dim0, there is an additional step where class-sample-scores of the batch
are normalized. The normalization is computed one class after another, using
the non-normalized scores of all samples for the given class (i.e., logits). The
normalized scores are then aggregated similarly as in the Bayesian attacks. No
leakage-independence assumptions are made. Moreover, the class-wise normal-
ization compensates the bias between the classes, which the a posteriori maxi-
mization alone does not involve. This treatment also has benefits that are specific
to the ML-based approach. With conventional (i.e., dim1) training, the distribu-
tions of the output logits are forced to"stay together" (means not too far apart,
with similar variances).

Discussion As we saw, an adaptive optimizer will set the learning rate differ-
ently for each parameter; proportionally to the inverse of their gradient’s vari-
ance. Using dim0 lets an adaptive optimizer take advantage of the fact that the
logits’ individual values can increase with more liberty than with dim1. What
is suggested by the experimental data from Adadelta and Adam plots from Fig-
ure 2, is that an adaptive learning rate alone is not sufficient to achieve the
logit’s individual imbalance towards rare classes. Indeed, we additionally need
them to follow an exponentially decay of the sum (or average) of past gradients
(as for Adam or RMSprop). This exponential decay allows the learning rate not
to vanish (or become small) on logits which have had a great change on previous
steps. As a consequence, the training will not stall.

14 L. D. Meier et al.

Another point we observed when using dim0 on an imbalanced dataset is
that the model may choose one particular rare class to target (in our examples
it is class 0). The model targets the easiest to train classes (arguably, as pointed
in Figure 5 of [9], class 0 or 8 are expected to be easier to distinguish than the
other classes), and they happen to be the most informative ones. This fact is
expected to also help the model perform better on balanced, ID-labeled datasets,
where again some of the ID classes can be easier to distinguish than others. Last,
the key-ranking algorithm itself will give more importance to easily classifiable
traces, a paradigm shift from all former studies on the SCA topic.

4 Experiments

All the test cases for dim0 presented in this Section will target a dataset using
the Hamming Weight (HW) or Hamming Distance (HD) labelling function. To
demonstrate its significance, dim0 needs to outperform the current state-of-the-
art class balancing technique, as well as models that use the easier Identity
Labelling. According to work by Picek et al. [29], the best balancer in the SCA
context is SMOTE [6].

We will hence compare dim0 with a HW labelling against SMOTE and, for
research purpose, also against state-of-the-art models with the identity labelling.
At last, will show that dim0 can also be used effectively on unprofiled attacks.

A detailed overview of the datasets and the ML models used for the ex-
periments can be found in Appendix A. The experiments on the FPGA-based
AES_HD [29] and ASIC-based DPAContestv4.2 [3] datasets showcase how our
dim0 model surpassed the same model with dim1 on profiled and unprofiled
attacks. To compete against the state-of-the-art, we target the ASIC-based AS-
CAD dataset and its variants [2], as multiple publications compared the HW
performance on ASCAD.

4.1 Profiling Attacks and the Hamming Weight Labelling

In this section, experiments on the ASCAD datasets were run 10 times and all
results reported with a 95% confidence interval.

AES_HD and DPAContestv4.2 datasets. First, we show an attack of the
AES_HD dataset (Np = 47′500, Na = 2500) with the HW leakage function. We
used the CNNaeshd and the CNN_exp models. Figure 4a shows that dim0 mod-
els worked much better in comparison with dim1, where the attacks are practi-
cally unfeasible. Additionally, we attack the DPAContestv4.2 (Np = 4500, Na =
500) dataset using the MLP_simple architecture. Figure 4b shows that the at-
tack is easier for dim0 than with dim1, as it converged within one epoch.

ASCAD_fixed with MLP_best.We attack the ASCAD_fixed dataset with
the MLP_best architecture, as suggested in the work by Benadjila et al. [2]. We
kept the proposed experiment setup, except for the softmax activation. As such,
200 epochs will be used. Figure 5a shows the results reported in the original

Taking AI-Based Side-Channel Attacks to a New Dimension 15

0 20 40 60 80 100
Epoch Number

0

25

50

75

100

125

150

175

200

Ke
y R

an
k

CNNaeshd dim 0
CNNaeshd dim 1

CNNexp dim 0
CNNexp dim 1

M
ea

n
Ra

nk

(a) AES_HD dataset.

0 5 10 15 20 25
Epoch Number

0

25

50

75

100

125

150

175

Ke
y R

an
k

MLP dim 0
MLP dim 1

M
ea

n
Ra

nk

(b) DPAContestv4.2 dataset.

Fig. 4: Attacking various HW-labelled datasets 50 times, comparing dim0 and dim1

(a) ASCAD_fixed, MLP_best results [2] with HW (left) and ID (right)

0 200 400 600 800 1000
Number of attack traces

0

25

50

75

100

125

150

175

M
ea

n
Ra

nk

ASCAD_fixed

MLP best dim0
MLP best dim1 SMOTE

(b) ASCAD_fixed, MLP_best results dim0 and
dim1 with SMOTE with HW labelling

Fig. 5: Attacking ASCAD_fixed with the MLP_best model and Nb = 100

paper for HW labeling (left) and ID (right). The plot reports how the number
of epochs affects the attack using the MLP_best architecture. In Figure 5b, we
report the performance of the MLP_best dim0 vs the MLP_best dim1 with

16 L. D. Meier et al.

SMOTE using the HW leakage model. In this scenario, the dim0 approach with
a HW labelling beats all its concurrents. We note that by flipping the dimension,
the model is now able to converge within 200 traces, while the original attack
(on the left hand-side of Figure 5a) could not converge after 1000 traces. For
SMOTE, more than 450 traces are required. And for the conventional technique,
dim1 with ID, at least 300.

(a) ASCAD_desync50 results with ID
labelling [30]

0 200 400 600 800 1000
Number of attack traces

0

50

100

150

200

250

M
ea

n
Ra

nk

ASCAD_desync50

CNN best dim0
CNN best dim1 SMOTE

(b) ASCAD_desync50, CNN_best results
with HW labelling

Fig. 6: Attacking ASCAD_desync50 with the CNN_best model and Nb = 200

ASCAD_desync50 with CNN_best. CNN_best is a ML model proposed
in the work by Benadjila et al. [2] to attack the ASCAD_desync50 dataset. Fig-
ure 6a shows the best configurations’ results on the ASCAD_desync50 dataset
with the ID labeling on three ML models and a classical Template attack. In
Figure 6b, we observe that CNN_best dim0 is better than any of the AS-
CAD_desync50 configurations since it needs less than 800 traces to reach GE =
1, against more than 4000 traces for dim1. However, dim0 seems slightly less
powerful than dim1 with SMOTE. For the latter configuration, a successful at-
tack is reached by using approximately 100 traces.

ASCAD_desync100 with CNN_best. Figure 7a illustrates the best config-
urations’ results on the ASCAD_desync100 dataset using ID labeling for three
ML models and one classical template attack. This plot was taken from the study
by Benadjila et al. [2]. Figure 7b demonstrates that CNN_best dim0 outper-
forms other ASCAD_desync100 configurations, requiring fewer than 550 traces
to achieve GE = 1. In contrast, none of the configurations presented in the Be-
nadjila et al. [2] is successful. Nonetheless, dim0 is still marginally less effective
than dim1 with SMOTE—which required only a few traces (less than 30) to
reach a key mean rank of 1.

In the following attacks, we report results from the work by Wouters et al. [39]
for the CNN_zaid and No_conv architectures. We did not change the proposed
parameters except the last layer (from dim1 to dim0). We used the horizontal

Taking AI-Based Side-Channel Attacks to a New Dimension 17

(a) ASCAD_desync100, results with ID
labelling [2]

0 200 400 600 800 1000
Number of attack traces

0

20

40

60

80

100

120

140

160

M
ea

n
Ra

nk

ASCAD_desync100

CNN best dim0
CNN best dim1 SMOTE

(b) ASCAD_desync100, CNN_best on dim0
and dim1 with SMOTE, HW labelling

Fig. 7: Attacking ASCAD_desync100 with the CNN_best model and Nb = 200

standardization during preprocessing, as it offers the best results for dim0 and
dim1 with SMOTE.
156 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Figure 2: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
misaligned datasets using different preprocessing techniques. Best viewed on screen.

model. Without preprocessing, the best model according to the validaton loss metric was
found after on average 32 epochs for the model by Zaid et al. and after 46 epochs for the
simplified model.

Figure 3: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
ASCAD_N100 dataset. Batch normalization has been removed for both models.

3.3 Conclusion
The experiments presented in this section demonstrate the importance of preprocessing the
traces before training the model. We demonstrate that the preprocessing strategies adopted
in [ZBHV20] and many other papers are suboptimal for these datasets. Additionally, we
demonstrate that the first convolutional block with filters of size one behaves as a network
internal preprocessing unit, which does not provide any clear advantage over traditional
preprocessing techniques. Finally, our results show that by using batch normalization one

(a) ASCAD_desync50, CNN_zaid
results with ID labelling [39]

0 50 100 150 200 250
Number of attack traces

0

50

100

150

200

M
ea

n
Ra

nk

ASCAD_desync50

CNN zaid dim0
CNN zaid dim1 SMOTE

(b) ASCAD_desync50, CNN_zaid results
with HW labelling

Fig. 8: Attacking ASCAD_desync50 with the CNN_zaid model and Nb = 50

ASCAD_desync50 with CNN_zaid.In Figure 8 we plot the results for the
ASCAD_desync50 using the CNN_zaid architecture—comparing the original
results of the ID leakage model with our runs in HW labelling. Figure 8b shows
that dim0 outperforms dim1 with the SMOTE since it reached the GE = 1
with fewer than 175 traces. The HW-dim0 result is not that far from with the
ID-dim1 result of the original paper, where approximately 140 traces are needed
to reach a successful attack.

ASCAD_desync50 with No_conv.Figure 9 compares the state-of-the-art
results with ID labelling against the HW labelling and dim0 or dim1 with

18 L. D. Meier et al.156 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Figure 2: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
misaligned datasets using different preprocessing techniques. Best viewed on screen.

model. Without preprocessing, the best model according to the validaton loss metric was
found after on average 32 epochs for the model by Zaid et al. and after 46 epochs for the
simplified model.

Figure 3: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
ASCAD_N100 dataset. Batch normalization has been removed for both models.

3.3 Conclusion
The experiments presented in this section demonstrate the importance of preprocessing the
traces before training the model. We demonstrate that the preprocessing strategies adopted
in [ZBHV20] and many other papers are suboptimal for these datasets. Additionally, we
demonstrate that the first convolutional block with filters of size one behaves as a network
internal preprocessing unit, which does not provide any clear advantage over traditional
preprocessing techniques. Finally, our results show that by using batch normalization one

(a) ASCAD_desync50, No_conv
results with ID labelling [39]

0 50 100 150 200 250
Number of attack traces

0

25

50

75

100

125

150

175

200

M
ea

n
Ra

nk

ASCAD_desync50

No conv dim0
No conv dim1 SMOTE

(b) ASCAD_desync50, No_conv on dim0
and dim1 with SMOTE, HW labelling

Fig. 9: Attacking ASCAD_desync50 with the No_conv model and Nb = 50

SMOTE. The No_conv architecture is used to target the ASCAD_desync50
dataset. Here again, the dim0 technique beats all its opponents, requiring ap-
proximately 110 traces for a successful attack, while in the case of SMOTE, the
performance fluctuates and does not reach a GE = 1. Moreover, the HW-dim0
attack is better than any ID labeling attack by a 70 trace margin.

156 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Figure 2: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
misaligned datasets using different preprocessing techniques. Best viewed on screen.

model. Without preprocessing, the best model according to the validaton loss metric was
found after on average 32 epochs for the model by Zaid et al. and after 46 epochs for the
simplified model.

Figure 3: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
ASCAD_N100 dataset. Batch normalization has been removed for both models.

3.3 Conclusion
The experiments presented in this section demonstrate the importance of preprocessing the
traces before training the model. We demonstrate that the preprocessing strategies adopted
in [ZBHV20] and many other papers are suboptimal for these datasets. Additionally, we
demonstrate that the first convolutional block with filters of size one behaves as a network
internal preprocessing unit, which does not provide any clear advantage over traditional
preprocessing techniques. Finally, our results show that by using batch normalization one

(a) ASCAD_desync100, CNN_zaid
results with ID labelling [39]

0 50 100 150 200 250
Number of attack traces

0

25

50

75

100

125

150

175

M
ea

n
Ra

nk

ASCAD_desync100

CNN zaid dim0
CNN zaid dim1 SMOTE

(b) ASCAD_desync100, CNN_zaid on
dim0 and dim1 with SMOTE, HW la-
belling

Fig. 10: Attacking ASCAD_desync100 with the CNN_zaid model, Nb = 50

ASCAD_desync100 with CNN_zaid. Figure 10 compares the performance
of the CNN_zaid architecture on the ASCAD_desync100 dataset and our target
scenarios. We see that the HW-dim0 results are close to the Identity labelling
results with dim1, while dim0 definitely beats the HW-dim1 with SMOTE which
did not converge.

Taking AI-Based Side-Channel Attacks to a New Dimension 19

ASCAD_desync100 with No_conv. Figure 11 shows that for the No_conv
models against the ASCAD_desync100, the ID labelling seems to perform bet-
ter than any of the HW labelling attacks. We observe that in the original paper,
GE = 1 is reached after approximately 170 traces, while in Figure 11b, none of
the methods could achieve GE = 1 with the 250 traces.

156 Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks

Figure 2: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
misaligned datasets using different preprocessing techniques. Best viewed on screen.

model. Without preprocessing, the best model according to the validaton loss metric was
found after on average 32 epochs for the model by Zaid et al. and after 46 epochs for the
simplified model.

Figure 3: Comparison between the models proposed by Zaid et al. (left) and those same
models without the first convolutional layer (right). The models are trained on the
ASCAD_N100 dataset. Batch normalization has been removed for both models.

3.3 Conclusion
The experiments presented in this section demonstrate the importance of preprocessing the
traces before training the model. We demonstrate that the preprocessing strategies adopted
in [ZBHV20] and many other papers are suboptimal for these datasets. Additionally, we
demonstrate that the first convolutional block with filters of size one behaves as a network
internal preprocessing unit, which does not provide any clear advantage over traditional
preprocessing techniques. Finally, our results show that by using batch normalization one

(a) ASCAD_desync100, No_conv
results with ID labelling [39]

0 50 100 150 200 250
Number of attack traces

0

20

40

60

80

100

120

140

160

M
ea

n
Ra

nk

ASCAD_desync100

No conv dim0
No conv dim1 SMOTE

(b) ASCAD_desync100, No_conv on
dim0 and dim1 with SMOTE, HW la-
belling

Fig. 11: Attacking ASCAD_desync100 with the No_conv model and Nb = 50

4.2 Conclusion

An interesting pattern is emerging from the experiments, regarding dim0 ’s ap-
parent performance’s instability while the number of attack traces increases.
This is a consequence of dim0 ’s nature: it seems to work best when the number
of attack traces in a batch is close to a multiple of the training batch size. In
fact the model was trained with a static batch size, while the plots shown in
this section iteratively increase the number of attack traces fed to the model.
Most notably, on Figure 6b, we said that the model is successful after 800 traces
(4 batches of 200 traces). However, after one batch, the model already achieved
a key rank close to zero. The same at 600 traces (3 batches). Evaluating the
traces for a non-batch size multiple (or close to it) seems to be the reason for
the discrepancy between 600 and 800 traces as well.

Overall, we obtained good performance for profiling attacks by using dim0
with HW labeling compared to the traditional ID leakage model in some cases.
Moreover, we observed that the lightweight dim0 method is more stable than the
state-of-the-art computationaly expensive SMOTE solution for the imbalacing
problems, especially for the desynchronized datasets, where we have smaller devi-
ations from the mean over ten runs. The new method could however benefit from
further specific model optimizations and is quite sensitive to the batch size. For
a complete performance analysis overview, we refer the reader to Appendix B.

20 L. D. Meier et al.

4.3 Unprofiled Attacks

We could successfully launch an unprofiled attack on the AES_HD dataset using
the Hamming Distance labelling, 44’000 traces for training and 6000 for valida-
tion (used to compute the model sensitivity), using the CNNexp model with a
classic regularization of 0.0008 applied on the Fully-Connected layer (weights &
bias), and Nb = 100. As detailed in Section 2.7, we reuse Timon’s strategy [38]
exactly with dim1 and only flip the softmax dimension for dim0. We launched
ten attacks using dim0 and dim1 respectively. The results are shown in Table 1.
The total duration of each attack was approximately 12 hours for the 15 epochs
using an i7-13700k Intel processor and no GPU.

Table 1: Unprofiled performance of the CNNexp model on the AES_HD dataset
using a HD labelling with 15 epochs and over 10 attacks for each dimension.

Attack Number 1 2 3 4 5 6 7 8 9 10
dim0 Key Rank 1 1 2 10 6 2 1 1 14 1
dim1 Key Rank 126 2 80 3 18 168 1 66 5 58

5 Conclusion and Future Work

This paper presents a new technique for performing DL-based SCA, embedded in
a new open-source toolbox for performing Side-Channel Attacks. This technique
consists of transposing the logits matrix before applying the softmax function.
It reduces the effect of imbalanced datasets, increases the convergence speed of
some models (especially for adaptive optimizers) in the profiling phase, and can
strongly improve the performance of unprofiled attacks as well. We compare our
results with the state-of-the-art models used in ID labelling, and concluded that
the dim0 with the HW leakage model has the potential to match and beat the
state-of-the-art in most scenarios. Additional model tuning seems to be necessary
for the dim0 to thrive and surpass the current results. While this publication
focused on applying dim0 on imbalanced datasets scenarios, Proposition 1 also
applies to the Identity Labelling (ID) case. Preliminary experiments on our cus-
tom dataset showcased a faster convergence and a lowering of needed attack
traces when using the ID labelling and dim0.

For future work, it would be interesting to see if an attack is possible with
only a single attack trace using dim0. As a dim0 model can only work with
multiple traces (with one trace, the model outputs a 100% probability for each
class), one possible avenue would be to compare the attack trace with some
profiling traces and only consider the output probability of the attack trace.

Acknowledgments This research was co-funded by the European Union’s
Chips Joint Undertaking (JU) under grant agreement No. 10111228.

Taking AI-Based Side-Channel Attacks to a New Dimension 21

A Experimental setup

A.1 Datasets

AES_nRF. is a home-made dataset taken from a software implementation of
AES-128 without protection. Sbox is implemented as a look-up table. The target
hardware was an nRF52840-DK board. We used a Chipwhisperer to capture the
power consumption. The dataset contains 47’500 profiling traces with random
keys and random plaintexts, as well as 2500 attack traces of random plaintexts
and a constant key. We standardized the profiling and attack traces such that
they have 0 mean and unit variance.

DPA contest V4.2. [3] is an AES software implementation with a first-order
masking technique [26].4 Since the mask value is publicly known, we removed
the masking and attack the key directly. We will use 4500 profiling traces and
500 attack traces. Each trace is 4000 samples long. We target the first S-Box
output on the first byte.

AES_HD. is a hardware implementation of AES with no protection introduced
by Stjepan Picek et al. [29].5 We used only a subset of 50’000 traces among the
100’000 ones available, with 1250 samples each. We target the last S-Box of
the AES on byte 0. We either used the Hamming Weight labelling function on
the last S-Box or the Hamming Distance labelling function, which yields the
Hamming Weight value of the input of the last S-Box XOR its output.

ASCAD_fixed. is a second-order masked implementation of the AES128, in-
troduced by Benadjila et al. [2]. The measurements collected represent the power
consumption of the first AES encryption round. Each measurement contains 700
samples, which denotes the usage of the third key byte (first masked byte) in
the Sbox function. This dataset contains 50’000 traces for profiling and 10’000
for the attacking phase. All of them were created using the same key.

ASCAD_desync50, ASCAD_desync100. are the traces from the AS-
CAD_fixed, with the same dimensionality (same number of traces, number
of samples, and the same dataset split), but randomly desynchronized by artifi-
cially applying jittering on a range of 50 and 100 samples, respectively. Hence,
those datasets introduced by Benadjila et al. [2] denote traces created by includ-
ing two side-channel counter-measurements (masking and jitter).

ASCAD_variable. is the same second-order masked implementation of the
AES128 as ASCAD_fixed. However, the difference between those two datasets
consists of having a variable key for the profiling traces and a fixed key for the
attacking ones — a scenario that is more plausible in real life. We have 200’000
traces for profiling and 100’000 for attacking. The traces contain 1400 samples
taken during the third Sbox transformation from the first encryption round. In
our study, we will attack the third key byte (which is also masked).
4 https://cloud.telecom-paris.fr/s/JM2iaRZfwrNKtSp
5 https://github.com/AESHD/AES_HD_Dataset

22 L. D. Meier et al.

A.2 Meta-architectures

Our studies used different meta-architectures from state-of-the-art DL models,
which performed well in previous studies during the SCA. We use the same
preprocessing techniques presented in their papers and sometimes hypertune
some parameters (mainly the batch size). For all the models we use the Negative-
Log Likelihood (NLL) loss function. The models are:

MLP_simple This model was used in the different studies [38, 20] and consists
only of 3 layers. The hyperparameters reported in the previous works [38,
20] were batch_size = 1000, epochs = 100, optimizer = Adam, and
learning_rate = 10−3. We mainly used them, with some exceptions pre-
sented in the experiments separately.

CNN_exp This model is taken from the work by Timon et al. [38] with the fol-
lowing default parameters:batch_size = 1000, epochs = 100, optimizer
= Adam, and learning_rate = 10−3. We’ll mention any parameter change
explicitly.

MLP_best This architecture was first proposed by Benadjila et al. [2] and
performed well against the ASCAD_fixed dataset. We reutilized the pa-
rameter values proposed in their study: batch_size = 100, epochs = 200,
optimizer = RMSprop, and learning_rate = 10−5. The model was used
in attacks against ASCAD_fixed, maintaining the same profiling-attacking
setup with 50,000 traces for profiling and 10,000 traces for the attacking
phase.

CNN_best This architecture was also introduced by Benadjila et al. [2] as an
improvement over MLP_best for the ASCAD desynchronized datasets. We
reused the parameter values from their paper: batch_size = 200, epochs
= 100, optimizer = RMSprop, and learning_rate = 10−5. This model was
tested against ASCAD_desync50 and ASCAD_desync100, using the same
profiling-attacking setup with 50,000 traces for profiling and 10,000 traces
for the attacking phase.

CNN_zaid This architecture, initially proposed by Zaid et al. [42], performed
well against the ASCAD datasets. We used the parameter values proposed by
Wouters et al. [39], based on the paper and code, as they stated these parame-
ters were more stable: batch_size = 50, epochs = 50, optimizer = Adam,
and learning_rate = 0.005. Additionally, we employed the One Cycle Pol-
icy learning rate strategy [32]. The models cnn_zaid50 and cnn_zaid100
were used to attack ASCAD_desync50 and ASCAD_desync100, respec-
tively, with the same profiling-attacking setup, and we compared our results
with those presented by Wouters et al. [39].

No_conv This architecture was proposed by Wouters et al. [39] as an im-
provement to the models by Zaid et al. [42]. We used the same param-
eter values proposed by Wouters et al. [39]: batch_size = 50, epochs
= 50, optimizer = Adam, and learning_rate = 0.005. Since these models
are derived from cnn_zaid, we also utilized the One Cycle Policy learning
rate strategy [32]. The models no_conv50 and no_conv100 were used to

Taking AI-Based Side-Channel Attacks to a New Dimension 23

attack ASCAD_desync50 and ASCAD_desync100, respectively, with the
same profiling-attacking setup.

CNNaeshd This model was proposed in the work by Zaid et al. [42] to attack
the AES_HD dataset. We use in our attacks the proposed parameters:
batch_size = 256, epochs = 20, optimizer = Adam, and learning_rate
= 10−3.

A.3 Preprocessing

On each of the attack mentioned in this paper, we did a standardization on the
profiling and attack traces such that they have 0 mean and unit variance.

A.4 Evaluation Metric

In side-channel attacks, the effectiveness of the attack is evaluated using the
average rank of the correct key candidate among all possible keys after analyzing
a certain number of traces (attack traces). This metric is called the Guessing
Entropy (GE). Lower GE values imply more effective attacks, with GE = 1
indicating the correct key is consistently the highest ranked. In our experiments,
we measure the mean average key to compare different attacks, since the same
metric is used in previous studies.

B Dimension 0 Performance Overview

Table 2 gives a succinct overview of the dim0 performance accros all the tested
scenarios.

24 L. D. Meier et al.

Table 2: Comparison of performance between model configurations from the
literature and from this work, targeting different ASCAD [2] datasets, namely
ASCAD_fixed ("fixed"), ASCAD_desync50 ("desync50"), ASCAD_desync100
("desync100") and , ASCAD_variable ("variable"). To have a consistent com-
parison of several results that fits into a table, we report two metrics (whenever
available): the average guessing entropy (GE) value achieved by the model when
the number of attack traces (NT) is 200 ("GE at NT=200") and the number of
traces required to achieve a GE of 1 ("NT for GE=1"). In this manner, we see
both how many traces a model needs to perform optimally and how it perform
when a limited number of traces is available. The * values are approximated
based on the figures, since in some works, precise numerical values are not re-
ported.

Paper Configuration fixed desync50 desync100 variable

G
E

at
N

T
=

20
0

N
T

fo
r

G
E
=

1

G
E

at
N

T
=

20
0

N
T

fo
r

G
E
=

1

G
E

at
N

T
=

20
0

N
T

fo
r

G
E
=

1

G
E

at
N

T
=

20
0

N
T

fo
r

G
E
=

1

[2]

MLP_best + ID 1 250* - - - - - -
MLP_best + HW 35* >1000 - - - - - -
CNN_best + ID - - 60* 4000 95* >5000 - -

[8] CNN_best + HW - - - - - - 19* >1000

[39] CNN_zaid + ID - - 1 140* 1 200* - -
No_conv + ID - - 1 180* 1 170* - -

Our study
-dim0 -

MLP_best + HW 1 195 - - - - - -
CNN_best + HW - - 5 780 10 570 240 >12’000
CNN_zaid + HW - - 1 175 1 185 - -
No_conv + HW - - 1 110 5 >250 - -

Our study
-SMOTE-

MLP_best + HW 10 450 - - - - - -
CNN_best + HW - - 1 100 1 26 200 12’000
CNN_zaid + HW - - 25 >250 60 >250 - -
No_conv + HW - - 5 >250 7 >250 - -

Taking AI-Based Side-Channel Attacks to a New Dimension 25

References

1. Azouaoui, M., Durvaux, F., Poussier, R., Standaert, F.X., Papagiannopoulos, K.,
Verneuil, V.: On the worst-case side-channel security of ecc point randomization in
embedded devices. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) Progress
in Cryptology – INDOCRYPT 2020. pp. 205–227. Springer International Publish-
ing, Cham (2020)

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. Journal of Crypto-
graphic Engineering 10(2), 163–188 (Nov 2019). https://doi.org/10.1007/s13389-
019-00220-8, https://doi.org/10.1007/s13389-019-00220-8

3. Bhasin, S., Bruneau, N., Danger, J.L., Guilley, S., Najm, Z.: Analysis and improve-
ments of the dpa contest v4 implementation. In: Security, Privacy, and Applied
Cryptography Engineering: 4th International Conference, SPACE 2014, Pune, In-
dia, October 18-22, 2014. Proceedings 4. pp. 201–218. Springer (2014)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: International workshop on cryptographic hardware and embedded systems. pp.
16–29. Springer (2004)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Cryptographic Hardware
and Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13–15, 2002 Revised Papers 4. pp. 13–28. Springer (2003)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. Journal of artificial intelligence research 16,
321–357 (2002)

7. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research 12(7) (2011)

8. Egger, M., Schamberger, T., Tebelmann, L., Lippert, F., Sigl, G.: A second look
at the ascad databases. In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 75–99. Springer (2022)

9. Fan, X., Tong, J., Li, Y., Duan, X., Ren, Y.: Power Analysis Attack Based on
Hamming Weight Model without Brute Force Cracking. Security and Communi-
cation Networks 2022, 1–11 (Jun 2022). https://doi.org/10.1155/2022/7375097,
https://doi.org/10.1155/2022/7375097

10. FIPS, P.: 197: Federal information processing standards publication 197. Announc-
ing the Advanced Encryption Standard (AES) (2001)

11. Hettwer, B., Gehrer, S., Güneysu, T.: Profiled power analysis attacks using convo-
lutional neural networks with domain knowledge. In: International Conference on
Selected Areas in Cryptography. pp. 479–498. Springer (2018)

12. Hettwer, B., Gehrer, S., Güneysu, T.: Applications of machine learning tech-
niques in side-channel attacks: a survey. Journal of Cryptographic Engineer-
ing 10(2), 135–162 (Apr 2019). https://doi.org/10.1007/s13389-019-00212-8,
https://doi.org/10.1007/s13389-019-00212-8

13. Hospodar, G., Gierlichs, B., Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine
learning in side-channel analysis: A first study. J. Cryptographic Engineering 1,
293–302 (Dec 2011). https://doi.org/10.1007/s13389-011-0023-x

14. Kerkhof, M., Wu, L., Perin, G., Picek, S.: Focus is key to success: A focal loss
function for deep learning-based side-channel analysis. In: International Workshop
on Constructive Side-Channel Analysis and Secure Design. pp. 29–48. Springer
(2022)

26 L. D. Meier et al.

15. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make Some Noise. Un-
leashing the Power of Convolutional Neural Networks for Profiled Side-channel
Analysis. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(3), 148–179 (May 2019). https://doi.org/10.13154/tches.v2019.i3.148-
179, https://tches.iacr.org/index.php/TCHES/article/view/8292

16. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014)
17. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-Normalizing Neural

Networks. In: Advances in Neural Information Processing Systems 30 (NIPS 2017)
(2017)

18. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings. Lecture Notes in Computer Science, vol. 1109, pp. 104–113.
Springer (1996). https://doi.org/10.1007/3-540-68697-5_9

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Lecture Notes in Com-
puter Science, vol. 1666, pp. 388–397. Springer (1999). https://doi.org/10.1007/3-
540-48405-1_25

20. Kuroda, K., Fukuda, Y., Yoshida, K., Fujino, T.: Practical Aspects on Non-
Profiled Deep-Learning Side-Channel Attacks against AES Software Imple-
mentation with Two Types of Masking Countermeasures Including RSM.
In: Proceedings of the 5th Workshop on Attacks and Solutions in Hard-
ware Security. p. 29–40. ASHES ’21, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3474376.3487285,
https://doi.org/10.1145/3474376.3487285

21. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implemen-
tations Using Deep Learning Techniques. In: Security, Privacy, and Applied
Cryptography Engineering, pp. 3–26. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-49445-6_1, https://doi.org/10.1007/978-3-
319-49445-6_1

22. Mangard, S., Oswald, E., Standaert, F.X.: One for all - all for one: Unify-
ing standard DPA attacks. Cryptology ePrint Archive, Paper 2009/449 (2009),
https://eprint.iacr.org/2009/449, https://eprint.iacr.org/2009/449

23. Masure, L., Dumas, C., Prouff, E.: Gradient Visualization for General
Characterization in Profiling Attacks. In: Constructive Side-Channel Anal-
ysis and Secure Design, pp. 145–167. Springer International Publishing
(2019). https://doi.org/10.1007/978-3-030-16350-19, https://doi.org/10.1007/978-
3-030-16350-1_9

24. Masure, L., Dumas, C., Prouff, E.: A Comprehensive Study of Deep Learning
for Side-Channel Analysis. Cryptology ePrint Archive, Report 2019/439 (2019),
https://ia.cr/2019/439

25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th international conference on machine learning
(ICML-10). pp. 807–814 (2010)

26. Nassar, M., Souissi, Y., Guilley, S., Danger, J.: RSM: A small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In:
Rosenstiel, W., Thiele, L. (eds.) 2012 Design, Automation & Test in Eu-
rope Conference & Exhibition, DATE 2012, Dresden, Germany, March 12-16,
2012. pp. 1173–1178. IEEE (2012). https://doi.org/10.1109/DATE.2012.6176671,
https://doi.org/10.1109/DATE.2012.6176671

Taking AI-Based Side-Channel Attacks to a New Dimension 27

27. Nesterov, Y.E.: A method of solving a convex programming problem with conver-
gence rate o\bigl(kˆ2\bigr). In: Doklady Akademii Nauk. vol. 269, pp. 543–547.
Russian Academy of Sciences (1983)

28. Perin, G., Wu, L., Picek, S.: The Need for Speed: A Fast Guessing Entropy Calcula-
tion for Deep Learning-based SCA. Cryptology ePrint Archive, Report 2021/1592
(2021), https://ia.cr/2021/1592

29. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The Curse of Class
Imbalance and Conflicting Metrics with Machine Learning for Side-channel Eval-
uations. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(1), 1–29 (Aug 2019). https://doi.org/10.13154/tches.v2019.i1.209-237,
https://hal.inria.fr/hal-01935318

30. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Paper 2018/053 (2018). https://doi.org/10.1007/s13389-
019-00220-8, https://eprint.iacr.org/2018/053

31. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems pp. 677–707 (2021)

32. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE
winter conference on applications of computer vision (WACV). pp. 464–472. IEEE
(2017)

33. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and computers in simulation 55(1-3), 271–
280 (2001)

34. Socha, P., Miškovský, V., Novotný, M.: A Comprehensive Survey on
the Non-Invasive Passive Side-Channel Analysis. Sensors 22(21), 8096
(Jan 2022). https://doi.org/10.3390/s22218096, https://www.mdpi.com/1424-
8220/22/21/8096, number: 21 Publisher: Multidisciplinary Digital Publishing In-
stitute

35. Standaert, F.X.: How (not) to use Welch’s T-test in side-channel security evalu-
ations. In: Smart Card Research and Advanced Applications: 17th International
Conference, CARDIS 2018, Montpellier, France, November 12–14, 2018, Revised
Selected Papers 17. pp. 65–79. Springer (2019)

36. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks (extended version). Cryptology ePrint Archive,
Paper 2006/139 (2006), https://eprint.iacr.org/2006/139

37. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

38. Timon, B.: Non-Profiled Deep Learning-based Side-Channel attacks with Sensitiv-
ity Analysis. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2019(2), 107–131 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.107-
131, https://tches.iacr.org/index.php/TCHES/article/view/7387

39. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems pp. 147–168 (2020)

40. Wu, L., Perin, G., Picek, S.: I Choose You: Automated Hyperparameter Tuning
for Deep Learning-based Side-channel Analysis. Cryptology ePrint Archive, Report
2020/1293 (2020), https://ia.cr/2020/1293

28 L. D. Meier et al.

41. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-channel measure-
ments with autoencoders. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 389–415 (2020)

42. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Method-
ology for Efficient CNN Architectures in Profiling At-
tacks (Nov 2019). https://doi.org/10.13154/tches.v2020.i1.1-36,
https://tches.iacr.org/index.php/TCHES/article/view/8391

43. Zeiler, M.D.: Adadelta: An adaptive learning rate method (2012)

