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Setting

Ascon

» Selected by the U.S. NIST as the standard for lightweight cryptography (LWC)

> Extensively evaluated and found to be mathematically secure
» However: Side-Channel attacks are possible [MBA123, WP23]

» Full key recovery through Correlation Power Analysis (CPA) with 8,000 traces
» CPA using deep learning techniques: 1,000 traces
» Partial key recovery from first-order masked implementation



Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?



Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?

> Still retain security even if masking order is halved [BGG'14]
» Do not rely on a single countermeasure only
> Investigate multiple approaches

» Analyse security benefit through the Mutual Information (MI) framework [SMY06]
using shortcut formulas [ABG'22]



Setting

Previous Work

Bitslice Masking and Improved Shuffling:
How and When to Mix Them in Software? by Azouaoui et al.:
» Mask first, then shuffle
» Three theoretical approaches for combining masking and shuffling

» Shuffle Tuples
» Shuffle Shares
» Shuffle Everything

» Non-linear (AND) operations: ISW
» Provide Mutual Information (MI) shortcut formulas



Setting

Previous Work

Our contribution:
» Mask first, then shuffle
» Five Ascon implementations on 32-bit RISC-V for combining masking and
shuffling

» Shuffle Tuples

» Shuffle Shares

» Shuffle Everything “Light”

» Unshuffled, but masked implementation
» Levelled implementation

» Non-linear (AND) operations: PINI [CS20]
» Use Mutual Information (MI) shortcut formulas

» Third-order masking
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Background
Masking

» Split a value x into d + 1 shares xp,...xy — “d-th order masking”

> Xxg,...,X4—1 are random values ry, ..., rg_1
> Xg=XDPrP--- B Xg—1

» Perform each operation on all shares of x

» To obtain the original value, we can recombine all shares



Background
Shuffling

> Take a sequence of independent operations [xp © yo, . . ., Xn © ¥n]
» Randomise the order in which they are executed according to a permutation 6

> At step i, perform the operation xp, o yp.



Background

Bit Interleaving

Splitting a 64-bit register into interleaved 32-bit registers:
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Background

Interleaving

Even right rotation (exemplarily by 8):
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Shuffle Tuples

> |Ignore Masking when shuffling
» Still shuffle entire operations
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Shuffle Shares

» Instead of shuffling across operations, we shuffle across shares
» We do not shuffle across shares of the same value
» We shuffle across shares with the same index of different values
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Shuffle Everything “Light”

» Adaptation of previous scheme
» Utilising the structure of bit interleaving
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PINI AND

Algorithm 1 PINI AND gadget with linear memory requirements

Inputs: a=[aop,...,aq], b= [bo,...,bq]
for i=0to d do
Ci < a,-b,-
end for
for i=0to d do
forj=i+1toddo
rij & F232; Fji < rij
z;j:(a;+1)-r;j+a;~(bj+r,-J-)
zj;:(aj+1)-rj;+aj~(b,-+rj;)
Cj < C,'—‘rZ,'j
G ¢+ zji
end for
end for
Outputs: ¢ = [¢p,...,cq4] sothat c=aA b




Results

Performance
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Results

Mutual Information
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Results
Cycles vs. MI

| Unshuffled | Shuffle Tuples | Shuffle Shares | Shuffle EL
d=3] 00752 | 01125 | 0376 | 0.7521

Table: The MI values per scheme so that an adversary needs 10° traces.

| Unshuffled | Shuffle Tuples | Shuffle Shares | Shuffle EL
| 2,714 | 3,456 | 8,371 | 8,563

Table: The number of cycles needed to compute one round of the permutation.



Results

Traces vs. Masking Order
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Conclusion

Takeaways

» Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

» Benefit of Shuffle EL increases as register size goes down

» Implementation is Ascon-specific, the schemes are not


https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon
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Caveats
» (Micro-)architectural effects will likely reduce the practical security
P Requires significant randomness
» No physical evaluation
Code:
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