Combined Masking and Shuffling for Side-Channel Secure Ascon
on RISC-V

Linus Mainka, Kostas Papagiannopoulos

03-04-2025

% UNIVERSITEIT
=% VAN AMSTERDAM

Setting

Ascon

» Selected by the U.S. NIST as the standard for lightweight cryptography (LWC)

> Extensively evaluated and found to be mathematically secure
» However: Side-Channel attacks are possible [MBA123, WP23]

» Full key recovery through Correlation Power Analysis (CPA) with 8,000 traces
» CPA using deep learning techniques: 1,000 traces
» Partial key recovery from first-order masked implementation

Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?

Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?

> Still retain security even if masking order is halved [BGG'14]
» Do not rely on a single countermeasure only
> Investigate multiple approaches

» Analyse security benefit through the Mutual Information (MI) framework [SMY06]
using shortcut formulas [ABG'22]

Setting

Previous Work

Bitslice Masking and Improved Shuffling:
How and When to Mix Them in Software? by Azouaoui et al.:
» Mask first, then shuffle
» Three theoretical approaches for combining masking and shuffling

» Shuffle Tuples
» Shuffle Shares
» Shuffle Everything

» Non-linear (AND) operations: ISW
» Provide Mutual Information (MI) shortcut formulas

Setting

Previous Work

Our contribution:
» Mask first, then shuffle
» Five Ascon implementations on 32-bit RISC-V for combining masking and
shuffling

» Shuffle Tuples

» Shuffle Shares

» Shuffle Everything “Light”

» Unshuffled, but masked implementation
» Levelled implementation

» Non-linear (AND) operations: PINI [CS20]
» Use Mutual Information (MI) shortcut formulas

» Third-order masking

Background

Ascon

X0
X1
X2
X3
X4

X0
X1
X2
X3
X4

ubstitution layer

Linear diffusion layer

X0
X1
X2
X3
X4

Background
Masking

» Split a value x into d + 1 shares xp,...xy — “d-th order masking”

> Xxg,...,X4—1 are random values ry, ..., rg_1
> Xg=XDPrP--- B Xg—1

» Perform each operation on all shares of x

» To obtain the original value, we can recombine all shares

Background
Shuffling

> Take a sequence of independent operations [xp © yo, . . ., Xn © ¥n]
» Randomise the order in which they are executed according to a permutation 6

> At step i, perform the operation xp, o yp.

Background

Bit Interleaving

Splitting a 64-bit register into interleaved 32-bit registers:

Background

Interleaving

Splitting a 64-bit register into interleaved 32-bit registers:

ENENENENENE
be3 L

O\

Even right rotation (exemplarily by 8):
ZLLDby bes LILID by

W usisssnusunssnnsnnnnsnunnnunsnns) N Wassn

Background

Interleaving

Even right rotation (exemplarily by 8):

T bes -m.

by by I I M I I I I T T
Odd right rotation (exemplarily by 7):
b

Shuffle Tuples

> |Ignore Masking when shuffling
» Still shuffle entire operations

D

X0

X1

X2

X3

Shuffle Shares

» Instead of shuffling across operations, we shuffle across shares
» We do not shuffle across shares of the same value
» We shuffle across shares with the same index of different values

D

1

X0

X1

X2

X3

Shuffle Everything “Light”

» Adaptation of previous scheme
» Utilising the structure of bit interleaving

D

D

= —] 4
| ; | ; :
| ; | ;
| ; ! ;

' 1 ']
" I
01 0 6O 0

| g : | i
| L] ' | 1
F] H 1
S S— —
' 1 i ']
e T o 0

61

X0

X1

X2

X3

PINI AND

Algorithm 1 PINI AND gadget with linear memory requirements

Inputs: a=[aop,...,aq], b= [bo,...,bq]
for i=0to d do
Ci < a,-b,-
end for
for i=0to d do
forj=i+1toddo
rij & F232; Fji < rij
z;j:(a;+1)-r;j+a;~(bj+r,-J-)
zj;:(aj+1)-rj;+aj~(b,-+rj;)
Cj < C,'—‘rZ,'j
G ¢+ zji
end for
end for
Outputs: ¢ = [¢p,...,cq4] sothat c=aA b

Results

Performance
Em AddConstant 8371 8363
8000 S?Box " N
W Linear Diffusion
7000 A
6000
5000 | d = 3 for all
il
g masked schemes
4000 4
3456
3000 1 2714
2000
1206
1000 4
Unmasked, Unshuffled Shuffle Tuples Shuffle Shares Shuffle Everything
shuffled Light

u]
8
I
i
it

Results

Mutual Information

1071 Baseline
—— No shuffling
1012 4 Shuffle Tuples
Shuffle Shares
1020 4 — Shuffle EL

d = 3 for all

lOB .
masked schemes

N. Traces

1_05 -

1_04 -

102

10 T T .
0 1 2 3

Miy(K: L)

Fa
w
(=2

Results
Cycles vs. MI

| Unshuffled | Shuffle Tuples | Shuffle Shares | Shuffle EL
d=3] 00752 | 01125 | 0376 | 0.7521

Table: The MI values per scheme so that an adversary needs 10° traces.

| Unshuffled | Shuffle Tuples | Shuffle Shares | Shuffle EL
| 2,714 | 3,456 | 8,371 | 8,563

Table: The number of cycles needed to compute one round of the permutation.

Results

Traces vs. Masking Order

N. traces

1012 4
1011 4
1010 4
109 4
108 4
107 A
10% A
10° 4

104 A

Unshuffled
Shuffle Tuples
Shuffle Shares
Shuffle EL

Masking order d

Conclusion

Takeaways

» Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

» Benefit of Shuffle EL increases as register size goes down

» Implementation is Ascon-specific, the schemes are not

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

Conclusion

Takeaways

» Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

» Benefit of Shuffle EL increases as register size goes down
» Implementation is Ascon-specific, the schemes are not
Caveats
» (Micro-)architectural effects will likely reduce the practical security
P Requires significant randomness
» No physical evaluation
Code:

https://uva-hva.gitlab.host/1l.mainka/side-channel-secure-ascon

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

Conclusion

Takeaways

» Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

» Benefit of Shuffle EL increases as register size goes down
» Implementation is Ascon-specific, the schemes are not
Caveats Future Work
» (Micro-)architectural effects will likely reduce the practical security
P Requires significant randomness
» No physical evaluation
Code:

https://uva-hva.gitlab.host/1l.mainka/side-channel-secure-ascon

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

References |

E

e T T 7 A 1

Melissa Azouaoui, Olivier Bronchain, Vincent Grosso, Kostas Papagiannopoulos, and Francois-Xavier Standaert.

Bitslice masking and improved shuffling: How and when to mix them in software?
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(2):140-165, Feb. 2022.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Francois-Xavier Standaert.

On the cost of lazy engineering for masked software implementations.
Cryptology ePrint Archive, Paper 2014/413, 2014
https://eprint.iacr.org/2014/413.

Gaétan Cassiers and Francois-Xavier Standaert.

Trivially and efficiently composing masked gadgets with probe isolating non-interference.
IEEE Transactions on Information Forensics and Security, 15:2542-2555, 2020

Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Ferrufino, Jens-Peter Kaps, and Kris Gaj.

Sca evaluation and benchmarking of finalists in the nist lightweight cryptography standardization process.
Cryptology ePrint Archive, Paper 2023/484, 2023

Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung.

A unified framework for the analysis of side-channel key recovery attacks (extended version).
Cryptology ePrint Archive, Paper 2006/139, 2006
https://eprint.iacr.org/2006/139.

Léo Weissbart and Stjepan Picek.

Lightweight but not easy: Side-channel analysis of the ascon authenticated cipher on a 32-bit microcontroller.
Cryptology ePrint Archive, Paper 2023/1598, 2023.

https://eprint.iacr.org/2014/413
https://eprint.iacr.org/2006/139

	Setting
	Background

