
Combined Masking and Shuffling for Side-Channel Secure Ascon
on RISC-V

Linus Mainka, Kostas Papagiannopoulos

03-04-2025



Setting
Ascon

▶ Selected by the U.S. NIST as the standard for lightweight cryptography (LWC)

▶ Extensively evaluated and found to be mathematically secure
▶ However: Side-Channel attacks are possible [MBA+23, WP23]

▶ Full key recovery through Correlation Power Analysis (CPA) with 8,000 traces
▶ CPA using deep learning techniques: 1,000 traces
▶ Partial key recovery from first-order masked implementation



Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?

▶ Still retain security even if masking order is halved [BGG+14]

▶ Do not rely on a single countermeasure only

▶ Investigate multiple approaches

▶ Analyse security benefit through the Mutual Information (MI) framework [SMY06]
using shortcut formulas [ABG+22]



Setting
The Goal

How can we create a software implementation of Ascon on a 32-bit
architecture that should be side-channel secure by a comfortable margin?

▶ Still retain security even if masking order is halved [BGG+14]

▶ Do not rely on a single countermeasure only

▶ Investigate multiple approaches

▶ Analyse security benefit through the Mutual Information (MI) framework [SMY06]
using shortcut formulas [ABG+22]



Setting
Previous Work

Bitslice Masking and Improved Shuffling:
How and When to Mix Them in Software? by Azouaoui et al.:

▶ Mask first, then shuffle
▶ Three theoretical approaches for combining masking and shuffling

▶ Shuffle Tuples
▶ Shuffle Shares
▶ Shuffle Everything

▶ Unshuffled, but masked implementation
▶ Levelled implementation

▶ Non-linear (AND) operations: ISW

▶ Provide Mutual Information (MI) shortcut formulas



Setting
Previous Work

Our contribution:

▶ Mask first, then shuffle
▶ Five Ascon implementations on 32-bit RISC-V for combining masking and

shuffling
▶ Shuffle Tuples
▶ Shuffle Shares
▶ Shuffle Everything “Light”
▶ Unshuffled, but masked implementation
▶ Levelled implementation

▶ Non-linear (AND) operations: PINI [CS20]

▶ Use Mutual Information (MI) shortcut formulas

▶ Third-order masking



Background
Ascon

x4

x4

x4

x3

x3

x3

x2

x2

x2

x1

x1

x1

x0

x0

x0

⊕⊕⊕⊕⊕⊕⊕⊕

Linear diffusion layer

Substitution layer

Round constant addition



Background
Masking

▶ Split a value x into d + 1 shares x0, . . . xd → “d-th order masking”
▶ x0, . . . , xd−1 are random values r0, . . . , rd−1

▶ xd = x ⊕ r0 ⊕ · · · ⊕ xd−1

▶ Perform each operation on all shares of x

▶ To obtain the original value, we can recombine all shares



Background
Shuffling

▶ Take a sequence of independent operations [x0 ◦ y0, . . . , xn ◦ yn]
▶ Randomise the order in which they are executed according to a permutation θ

▶ At step i , perform the operation xθi ◦ yθi



Background
Bit Interleaving

b0b63

b62 b0 b63 b1

Splitting a 64-bit register into interleaved 32-bit registers:



Background
Interleaving

b0b63

b62 b0 b63 b1

b62 b0 b63 b1

b62 b0 b63 b1

Splitting a 64-bit register into interleaved 32-bit registers:

Even right rotation (exemplarily by 8):



Background
Interleaving

b0b63

b62 b0 b63 b1

b62 b0 b63 b1

b62 b0 b63 b1

b62 b0 b63 b1

b62 b0 b63 b1

Splitting a 64-bit register into interleaved 32-bit registers:

Even right rotation (exemplarily by 8):

Odd right rotation (exemplarily by 7):



Shuffle Tuples
▶ Ignore Masking when shuffling
▶ Still shuffle entire operations



Shuffle Shares
▶ Instead of shuffling across operations, we shuffle across shares
▶ We do not shuffle across shares of the same value
▶ We shuffle across shares with the same index of different values



Shuffle Everything “Light”
▶ Adaptation of previous scheme
▶ Utilising the structure of bit interleaving



PINI AND

Algorithm 1 PINI AND gadget with linear memory requirements

Inputs: a = [a0, . . . , ad ], b = [b0, . . . , bd ]
for i = 0 to d do

ci ← aibi
end for
for i = 0 to d do

for j = i + 1 to d do

rij
$← F232 ; rji ← rij

zij = (ai + 1) · rij + ai · (bj + rij)
zji = (aj + 1) · rji + aj · (bi + rji )
ci ← ci + zij
cj ← cj + zji

end for
end for
Outputs: c = [c0, . . . , cd ] so that c = a ∧ b



Results
Performance

d = 3 for all
masked schemes



Results
Mutual Information

d = 3 for all
masked schemes



Results
Cycles vs. MI

Unshuffled Shuffle Tuples Shuffle Shares Shuffle EL

d = 3 0.0752 0.1125 0.376 0.7521

Table: The MI values per scheme so that an adversary needs 106 traces.

Unshuffled Shuffle Tuples Shuffle Shares Shuffle EL

2, 714 3, 456 8, 371 8, 563

Table: The number of cycles needed to compute one round of the permutation.



Results
Traces vs. Masking Order



Conclusion

Takeaways

▶ Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

▶ Benefit of Shuffle EL increases as register size goes down

▶ Implementation is Ascon-specific, the schemes are not

Caveats

▶ (Micro-)architectural effects will likely reduce the practical security

▶ Requires significant randomness

▶ No physical evaluation

Code:
https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon


Conclusion

Takeaways

▶ Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

▶ Benefit of Shuffle EL increases as register size goes down

▶ Implementation is Ascon-specific, the schemes are not

Caveats

▶ (Micro-)architectural effects will likely reduce the practical security

▶ Requires significant randomness

▶ No physical evaluation

Code:
https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon


Conclusion

Takeaways

▶ Shuffle Shares and Shuffle EL are better than just increasing d
(Assuming no shuffling permutation leakage)

▶ Benefit of Shuffle EL increases as register size goes down

▶ Implementation is Ascon-specific, the schemes are not

Caveats Future Work

▶ (Micro-)architectural effects will likely reduce the practical security

▶ Requires significant randomness

▶ No physical evaluation

Code:
https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon

https://uva-hva.gitlab.host/l.mainka/side-channel-secure-ascon


References I

Melissa Azouaoui, Olivier Bronchain, Vincent Grosso, Kostas Papagiannopoulos, and François-Xavier Standaert.

Bitslice masking and improved shuffling: How and when to mix them in software?
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022(2):140–165, Feb. 2022.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert.

On the cost of lazy engineering for masked software implementations.
Cryptology ePrint Archive, Paper 2014/413, 2014.
https://eprint.iacr.org/2014/413.

Gaëtan Cassiers and François-Xavier Standaert.

Trivially and efficiently composing masked gadgets with probe isolating non-interference.
IEEE Transactions on Information Forensics and Security, 15:2542–2555, 2020.

Kamyar Mohajerani, Luke Beckwith, Abubakr Abdulgadir, Eduardo Ferrufino, Jens-Peter Kaps, and Kris Gaj.

Sca evaluation and benchmarking of finalists in the nist lightweight cryptography standardization process.
Cryptology ePrint Archive, Paper 2023/484, 2023.

Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung.

A unified framework for the analysis of side-channel key recovery attacks (extended version).
Cryptology ePrint Archive, Paper 2006/139, 2006.
https://eprint.iacr.org/2006/139.

Léo Weissbart and Stjepan Picek.

Lightweight but not easy: Side-channel analysis of the ascon authenticated cipher on a 32-bit microcontroller.
Cryptology ePrint Archive, Paper 2023/1598, 2023.

https://eprint.iacr.org/2014/413
https://eprint.iacr.org/2006/139

	Setting
	Background

